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FINAL REPORT ON THE SPECIAL YEAR IN NUMERICAL ANALYSIS, 1980-81

1. Introduction /k/f:(];K(7i¥z)ﬂ'[ 725{//

Each year the Department of Mathematics at the University of Maryland
has a Special Year in some branch of mathematics. This past year the
topic was Numerical Analysis. The Special Year in 1980-81 was jointly
sponsored by the Air Force Office of Scientific Research and the Mathematics
Department. The main goal of the year was to advance the state of the
art in numerical analysis by bringing together the leading experts in the
field for formal lectures and informal discussions of recent progress,
current problems, and future trends. We placed special emphasis on
numerical solution of partial differential equations, global continuation '
methods, numerical methods in statistics, numerical linear algebra, and
numerical problems connected with special functions. The activities in
statistics, numerical linear algebra, and special functions took place
in the Fall Semester and those in the numerical solution of partial dif-
ferential equations took place in the Spring. In the area of global
continuation methods, the activities were spread throughout the year. A
subsection of this report is devoted to each of these major activities.

Through the lectures and the extensive opportunities for informal
discussions, the Special Year provided an excellent opportunity for exchange

of information and ideas between the members of the large and active

numerical analysis group at the University and the visiting mathemarician.,
We believe the benefits will be substantial both to the University and ‘o

the international numerical analysis community.

ppproves for putlic release;
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2, Activities

a. Numerical Solution of Partial Differential Equations

A wide variety of important problems in science and engineering are
formulated as initial-boundary value problems for partial differential

equations, the numerical solution of which is one of the most important

areas of numerical analysis. In order to survey the central problems and

trends in this area, we invited a total of 30 distinguished visitors to the
campus during the Spring Semester. These 30 visitors represented nearly

all important subfields of the area. The lectures by the visitors were |

S A ke e e o bt s S e ey oy
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attended by Maryland students and faculty who are working in the area
or have an interest in it, members of the numerical analysis community

of the Washington area (e.g., from the Naval Surface Weapons Center), !

and of course the other visitors in residence at the time. In addition

to the lectures there was ample opportunity for informal discussions.
These discussions were especially fruitful and a number of joint

research projects have grown out of them. Many of the visitors submitted
written versions of their lectures. These range from extended abstracts,
to systematic survey papers, to standard research papers. This collection
of papers has been published as part of the Lecture Note Series of the
Mathematics Department. The activities in this area were loosely divided
between finite element and finite difference methods. The program in
Numerical Solution of Partial Differential Equations was directed by
Professors I. Babufka, T.-P. Liu, and J. Osborn.

See Attachment A for a list of partfcipants and lectures.
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b. Numerical Methods in Statistics, Numerical Linear Algebra, and

Computation of Special Functions

The fields of statistics, linear algebra, and special functions are
usually regarded as distinct by the mathematical community. In applications,
however, there is considerable overlap: each field leads to numerical
and other problems in at least one of the other two. The increasing speed
and capacity of modern computers is bringing more and more of these problems
into the realm of feasibility.

In order to generate as many contacts as possible between research
workers in the three fields, it was decided to concentrate activities
into a single conference. This was held from October 2 to October 8, 1980
at the Adult Education Center on the College Park campus. The conference {
was advertised in the Notices of the American Mathematical Society, SIAM
News, Bulletin of the Institute of Mathematical Statistics, AMSTAT
News, and the Washington Statistical Society. In addition, announcements

of the conference were sent directly by mail to a list of approximately

1650 individuals, including all members of S.I.A.M. resident in North America.
The organizing committee consisted of F, W. J. Olver, G. Stewart and G. Yang.
In all, 132 individuals registered for and a;tended the conference.
This included 67 from the University of Maryland, 29 from other universities,
18 from government agencies, and 14 from industry. (Four gave no affiliation.)
The attendees from the University of Maryland represented 11 different
departments or programs,
The program consisted of 10 invited l-hour lectures and 21 30-minute

lectures. Speakers in the second category were selected by the organizing




committee from extended abstracts submitted in advance. There were also
sessions for 15-minute contributed papers.

See Attachment B for the conference program, abstracts of the l-hour
invited lectures, abstracts of the 30-minute selected talks, and a list of

registrants.

c. Homotopy Continu&tion Methods

Homotopy continuation methods are directed towards solving systems
of equations in situations where approximate solutions are not available
and quasi-newton type methods fail. Smooth continuation methods were
emphasized, although simplicial methods were represented by Eaves and
Peitgen. Keller's and Watson's lectures paid special attention to
applications to physical problems. Harrison and Smale gave lectures
aimed at topics relevant to theorical understanding of families of
periodic orbits (Warrison) and the number of steps needed to implement
methods (Smale). Interactions with visitors have led to two papers being
written. The homotopy program was organized by Professor J. A. Yorke.

See Attachment C for a list of participants and lectures,




LIST OF ATTACHMENTS

ATTACHMENT A: List of Participants and Lectures in Numerical PDE Portion
of Special Year:

ATTACHMENT B: Program, Abstracts of the l-Hour Invited Lectures, Abstracts
of the 30~Minute Selected Talks, and List of Registrants
for the Conference on Applications of Numerical Analvsis
and Special Functions in Statistics,

ATTACHMENT C: List of Participants and Lectures in Global Continuation

Methods Portion of Special Year.
I




ATTACHMENT A:

List of Participants and Lectures in Numerical

PDE Portion of Special Year




List of Participants

PROFESSOR GARTH BAKER
Harvard University

PROFESSOR GARRETT BIRKHOFF
Harvard University

PROFESSOR JAMES BRAMBLE
Cornell University

PROFESSOR F. BREZZI
Universite di Pavia
ITALY

PROFESSOR P.G. CIARLET
Universite Pierre et Marie
Curie, FRANCE

PROFESSOR JIM DOUGLIS, JR.
University of Chicago

PROFESSOR T. DUPONT
University of Chicago

PROFESSOR B. ENQUIST
University of California,
Los Angeles

DR. RICHARD EWING
Mobil Field Research
Laboratory

PROFESSOR R. FALK
Rutgers University

PROFESSOR P. GARABEDIAN
Courant Institute

PROFESSOR J. GLIMM
Rockefeller University

PROFESSOR AMIRAM HARTEN
Tel-Aviv University
ISRAEL

PROFESSOR LING HSAIO
Brown University and
Academia Sinica, Peking
PEOPLES REPUBLIC OF CHINA

PROFESSOR P. LAX
Courant Institute

PROFESSOR MITCHELL LUSKIN
Courant Institute

PROFESSOR A, MAJADA
University of California,
Berkeley

PROFESSOR J. NITSCHE
Inst. Fur Angewandte Math.
GERMANY

PROFESSOR J.T. ODEN
University of Texas,
Austin

PROTESSOR J. OLIGER
Stanford University

PROFESSOR A. SCHATZ
Cornell University

PROFESSOR RIDGWAY SCOTT
University of Wisconsin
Mathematics Research Center

PROFESSOR G. STRANG
Massachusetts Institute
of Technology

PROTESSOR ROGER TEMAM
Universite de Paris
FRANCE

PROFESSOR VIDAR THOMEE
Chalmers University of
Technology

PROFESSOR LARS WAHLBIN
Cornell University

PROFESSOR W. WENDLAND
Technische Hochschule
Darmstadt, GERMANY

PROFESSOR B. WENDROFF
Los Alamos Scientific
Laboratory

PROFESSOR MARY WHEELER
Rice University

PROFESSOR MILOS ZLAMAL
Technical University
CZECHLOSLOVAKIA




List of Lectures

DATE

Jan

Jan

Jan

Jan

Jan

Jan

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

16

20

20

22

27

29

10

10

10

12

12

17

17

18

19

24

24

26

V.

M.

SPEAKER

Thomee

Thomee

Bramble

Birkhoff

Thomee

Scott

Luskin

Harten

Luskin

Lax
Temam

Ciarlet

. Ciarlet

Wheeler

. Temam

Nitsche

Douglas

Oden

Baker

TOPIC

Single step methods for linear differential equations
in Banach spaces, PART I

Single step methods for linear differential equations
in Banach spaces, PART II

Remarks on Lagrange multiplier techniques in conjunc-
tion with finite element approximations in variocus
elliptic problems

Adapting Courant-Friedrichs Levy to the 1980's

Single step methods for linear differential equations
in Banach spaces, PART III

A comparison of laboratory experiments with a model
equation for water waves

Analysis of a fractional step method for fluid flow
in a pipe

On random choice methods for hyperbolic conservation
laws

On a finite element method to solve the critcality
eigenvalue problem for the transport equation

Convergence almost everywhere of random choice schemes
Variational problems in mechanics (plasticity) PART I
Questions of existence in non linear elasticity
Justification of the von Karman equations

Mixed methods for miscible displacement problems
Variational problems in mechanics (plasticity) PART II

The method of straightening the free boundary in
moving boundary problems

Numerical simulation of flow in porus media

Analysis of some contact problems in nonlinear
elasticity

Spectral approximation in Riemannian geometry
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List of Lectures {continued)

DATE

Feb

Feb

Mar

Mar

Mar

Mar
Mar

Mar

Mar

Mar

Mar

Mar

Mar

Apr

26

27

10

10

12

12

24

24

26

31

SPEAKER
R. Ewing
J. Nitsche
B. Enquist

B. Wendroff

L. Wahlbin
W. Wendland
B. Enquist
L. Wahlbin
B. Wendroff
W. Wendland
L. Wahlbin
A. Majda

T. Dupont
J. Glimm

A. Schatz
A. Majda

F. Brezzi
A. Schatz
M. Zlamal

TOPIC

Alternating directional multistep procedure for
nonlinear parabolic P.D.E.'s

A remarkable approximation property of finite ele-
ments and its consequences

Radiation boundary conditions at computational
boundaries

Defect corrections, multigrids and selected arpli-
cations, PART I

On maximum norm estimates in finite element methods
PART I

Asymptotic convergence of boundary element methods
Flux splittings in compressible flow computations

On maximum norm estimates in finite element methods
PART II

Defect corrections, multigrids and selected appli-
cations, PART II

Integral equation methods for mixed boundary value
problems

On maximum norm estimates in finite element methods
PART III

Vortex methods in fluid flow
Mesh modification in finite element methods

Hydrodynamics without diffusion: Theory, computation
and application, PART I

Singular functions in the finite element method

A theory for Mach Stern formation in reacting shock
fronts

Finite dimensional approximation of nonlinear nrob-
lems, PART I

Boundedness in L of the Rit:z projectien

Galerkin-finite element methcas for the solution of
nonlinear evolution equations, PART I




e

List of Lectures (continued)

DATE

Apr

Apr

Apr

Apr

Apr

Apr

Apr

Apr

8

9

9

10

14

14

15

16

16

21

23

24

28

s}

M.

SPEAKER

Glimm

Hsiao

Oliger

Glimm

Glimm

Zlamal

Falk

Strang

Brezzi

Brezzi

Garabedian

Zlamal

Brezzi

Zlamal

TOPIC

Hydrodynamics without diffusion: Theory, computation
and application, PART II

Overtaking of shock waves in steady two dimensional
supersonic flows

Adaptive difference methods for time dependent prob-
lems

Mathematical aspects of quantum field theory

Hydrodynamics without diffusion: Theory, computzticn
and application, PART III

<

Galerkin-finite element metnods for the solution of
nonlinear evolution equations, PART II

A mixed finite element method for the simply sup- i
ported plate problem

Optimal design

Finite dimensional approximation of nonlirnear prob-
lems, PART IT

Finite dimensional approximation of nonlinear prob-
lems, PART III

Numerical analysis of equilibria with islands Iy
magnetohydrodynamics

Galerkin-finite element methods for the solution of
nonlinear evolution equations, PART III

Finite dimensional approximation of nonlinear prob-
lems, PART IV

Galerkin-finite element methods for the solution of
nonlinear evolution equations, PART IV




ATTACHMENT B: Program, Abstracts of the 1-Hour Invited Lectures,
Abstracts of the 30-Minute Selected Talks, and List
of Registrants for the Conference on Applications of

Numerical Analysis and Special Functions in Statistics
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program for

THE CONFERENCE ON APPLICATIONS OF NUMERICAL

ANALYSIS AND SPECIAL FUNCTIONS IN STATISTICS

Adult Education Center
UNIVERSITY OF MARYLAND
College Park, Maryland

October 2 -8, 1980

s ponsored by

U.S. Air Force Office of Scientific Research

Department -of Mathematics, University of Maryland

organizing commi t t+t ee

Grace Yang The Mathematical Statistics Program

Frank Olver Institute for Physical Science and Technology

G.W. Stewart Department of Computer Science




special year in numerical analysis:

This conference is part of a Special Year in Numerical Analysis sponsored
by the U.S. Air Force Office of Scientific Research and the Department of
Mathematics, University of Maryland. Special Year visitors are listed be-
low,

For further information contact Professors: P. Wolfe

Y. Yorke
|. Babuska
SPECIAL YEAR VISITORS:
Fall R. Askey* Spring G. Birkhoff A. Harten G. Strang
W. Cou, ¥ J. Bramble H. Keller R. Temam
J. Dennis* F. Brezzi H.-0. Kreiss V. Thomée
W. Gautschi* A. Chorin P. Lax W. Wendiund
J. Harrison P. Ciarlet M. Lluskin B. Wendroff
S. Karlin¥ J. Douglas, Jr. A. Majda M. Wheeler
P. Krishnaiah* T. Dupont J. Nitsche M. Zlamal
J. Lyness* B. Enquist J. Oden
C. Paige* R. Ewing J. Oliger
H.O. Peitgen R. Falk A. Schatz
J. Snel|* P. Garabedian R. Scott
L. Watson J. Glimm S. Smale

*Conference speakers.




Registration

The registration booth for the Conference is located on the Main Concourse

in the Adult Education Center and will be manned as follows:
Wednesday October | 7:30 - 9:30 P.M,
Thursday October 2 8:30 - 12:00 A.M,
Friday October 3 8:30 - 12:00 A.M,
Saturday October 4 8:30 - 12:00 A.M.
Sunday October 5 7:30 - 9:30 P.M,
Monday October 6 8:30 - 12:00 A.M.
Tuesday October 7 8:30 - 12:00 A.M.

Message Board

There will be a message board located at the Conference Room, #1105, for
your convenience.

: Additional Information
‘. ____________________________________________________ -]
I The names of the morning and afternoon chairpersons and the names and

titles of the speakers giving contributed papers will be published sep-
arately, since they are not available at the time of this printing.

There will also be available a phamplet containing information on local
transportation and sightseeing, and restaurants.




9:00 - 9:30

Thursday 10-2-80

Rm 1105

OPENING OF THE CONFERENCE: W.E. KIRWAN
(Chairman, Dept. of Mathematics)

WELCOMING ADDRESS: FRANK J. KERR
(Provost, Division of Mathematical
& Physical Seciences & Engineering)

MORNING SESSION:

9:30 - 10:30
10:30 - 11:00
[§1:00 - 11:30
11:30 - 12:00

C.C. PAIGE, MeGill University, CANADA

"The General Gauss-Markov Model and the Singular Value
Decomposition"

Coffee

GEORGE CYBENKC, Tufts University

"The Efficient Solution by Orthogonalization of Linear
Prediction Problems for Stationary Time Series™

JAMES A, CADZOW, Virginia Polytechnic Inst,

"Autoregressive-Moving Average Spectral Estimation: A
New Effective Modeling Procedure"

AFTERNOON SESSION:

1:30 - 2:30
2:30 - 3:00
3:00 - 3:30
3:30 - 4:00
4:00 ~ 4:30

——— a——

S. KARLIN, Stanford University

"A Diffusion Stochastic Model of Mathematical Genetics
Involving Airy Functions"

Coffee

S.K. KATTI, University of Missouri
Topic: Infinite Divisibility

K.O. BOWMAN, Union Carbide Corporation

"Models for Approximating the Percentage Points of
Distributions”

Contributed Papers




Friday  10-3-80 RM 1105
c

MORNING SESSION:

9:00 - 10:00 J.E. DENNIS, Rice University

"inside Optimization Routines"

10:00 ~ 10:30 Coffee
10:30 - 11:00 FRANKLIN T. LUK, Cormell University
"The Communal ity Probiem for Stieltjes Matrices"
11:00 - 11:30 ROBERT B. DAVIES, Untversity of California, Berkeley
"Maximum Likel ihood Estimation"
11:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

[:30 - 2:30 P.R. KRISHNAIAH, University of Pittsburgh

"Computations of Muitivariate Distributions"
2:30 - 3:00 Cotfee

3:00 - 3:30 LOUIS KATES

"The Zonal Polynomials of Multivariate Analysis as
Special Functions"

3:30 - 4:00 KEVIN W.J. KADELL, University of Wisconsin
"The Selberg Distribution”

4:00 - 4:30 Contributed Papers

Saturday 10-4-80 R4 1123
llllllllllllllllllllllllllllIlllllllllllllllllllIllllllIlllllllllIlIlIl-l--llllll-l------lnl-

MORNING SESSION:

9:00 - 10:00 J.N, LYNESS, Argonne National Laboratory

"The Calculations of Trigonometric Fourier Coefficients"

10:00 - 10:30 Coffee

(SATURDAY SESSION CONTINUED ON NEXT PAGE)




10:30 - 11:00 PAUL SPECKMAN, University of Oregon

"Spline Smoothing and Optimal Rates of Convergence in
Nonparametric Regression Models"

11:00 - 11:30 MICHAEL GHIL, Courant Institute

"A Stochastic~-Dynamic Mode! for Global Atmospheric Mass
Field Statistics"

Monday 10-6~80 RM {05
5 .. |

MORNING SESSION:

9:00

10:00  J.L. SNELL, Dartmouth University

"Random Waiks and Electric Networks"
10:00 - 10:30 Coffee

10:30 - 11:00 ROY S. FREEDMAN, Hazeltine Corporation

""Random Walks and Statistical Communication"

11:00 - 11:30 DAVID THOMSON, Bell Laboratories
"Applications of Spheriodal Wave Functions to Time Series
Analysis"

{1:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

1:30 - 2:30  G.W. STEWART, University of Maryland

"Matrix Perturbation Theory and Linear Regression”
2:30 - 3:00 Coffee

3:00 - 3:30 E.J. WEGMAN, Office of Naval Research

"On Computer Architectures for Statistical Algorithms"

3:30 - 4:00 ASHIS SEN GUPTA, Stanford University

"On the Applications of Special Function- in Tewl . o
Standardized Generalized Variancecs of Muiiivariaie llor-
mal Populations of Possibiy Differcni LUimensions”

(MONDAY SESSION CONTINUED ON NEXT PAGE)




4:00 - 4:30 Contributed Papers

EVENING:

7:30 - 9:30 Wine and cheese garden party at the Rossborough Inn

Tuesday 10-7-80 RM 1105

MORNING SESSION:

9:00 - 10:00 W.J, CODY, Argonne National Laboratory

"Preliminary Report on Software for the Modified Bessel

Functions of the First Kind"
10:00 - 10:30 Coffee .
10:30 - 11:00 N.M, TEMME, Mathematisch Centrum, THE NETHERLANDS

")acomplete Gamma Functions, Numerical and Asymptotical

Aspects for Evaluation and Inversion"
11:00 - 11:30 RODERICK WONG, University of Manitoba, CANAD

"Some Applications of Asymptotics in Statistics"

[1:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

1:30 - 2:30 R.A. ASKEY, University of Wisconsin

"Gamma and Beta Functions From Euler to Selbera and Their
Orthogonal Complements"

2:30 - 3:00 Coffee

3:00 - 3:30 CHARLES F. DUNKL, University of Virginia

"Discrete Orthogonal Polynomials"

3:30 ~ 4:00 MARIETTA J. TRETTER, The Pemnsylvania State Universit:

"Absolute Error Bounds for Edgeworth Asyrptotic [xpan-ions”

4:00 ~ 4:30 Contributed Papers




Wednesday

R

10-8-80 RM 1105

MORNING SESSION:

9:00

10:00

10:30

11:00

1

10:00

10:30

11:00

{1:30

W. GAUTSCHI, Purdue University

"Special Functions: Computational Considerations”

Coffee

DONALD E. AMOS, Sandia National Laboratories

"Computations of the Central and Noncentral
Distributions"

WALTER R, NUNN, Center for Naval Analysis

"The Laguerre Transform"

F




PROGRAM

SUPPLEMENT:

THE CONFERENCE ON APPLICATIONS OF NUMERICAL
ANALYS!S AND SPECIAL FUNCTIONS IN STATISTICS

CHATRPERSONS FOR THE CONFERENCE:

Thursday, Oct. 2, 1980 Morning: Professor Diane O'Leary
Afternoon: Professor Peter Wolfe
Friday, Oct. 3, 1980 Morning: Professor G.W. Stewart
Afternoon: Professor Paul Smith
Saturday, Oct. 4, 1980 Morning: Professor B. Kellogg
Monday, Oct. 6, 1980 Morning: Professor G. Yang
Afternoon: Professor S. Kotz
Tuesday, Oct. 7, 1980 Morning: Professor F. Olver
Afternoon: Professor B. Carlson
Wednesday Oct. 8, 1980 Morning: Professor J. Keilson

PARTIAL LIST OF CONTRIBUTED PAPERS:

Dr. E. Cuthill 1
David Taylor Naval Ship R & D Center

Mon. Dr. Alexander S. Elder "Ascending and Asymptotic Series for Squares,
1C-6-80 Aberdeen Proving Ground Products and Cross Products of the "odified
4:30 Bessel Functions”
Or. Jerry Leon fields Topic: Convergence of an explicit sequence of
University of Alberta rational approximations to the hypergeometric
functions y o
Fioy = F Q! EARY et
atialg I
ERRRELA
in the region
D={v: Jarg vl <m, Jlargti+v)| <m, v ¢ [-1,0]}.
Mon., DOr, James \W. Longley "™Modified Gram-Schmidt Process Versus Classical
10~6-80G Gram Schmidt"
I1:45
Fri. Br. Clifford Spiegeiman "An Algorithm for Minimizing an Implicitly
i0-3-80 National Bureau of Standards Restricted Objective Function"
'1:30 (with Dr. Witliam J. Studden, Purdue Univ.)
Mon, Dr. James !i. Valbert "Use of a Continued Fraction to Evaluate the
10-6-30 Exponential Integral in the Complex Plane"
11:30
SPECIAL HALF-HOUR TALK:
Th“rs'n Dr. Richard Heilberger “The Design and Construct of Test Data Sets for
;O'g"fé Regression Procedures" (with Dr.'s Paul F.
- 410

Velleman and Agelia Ypellar)




PROGRAM SYNOPSIS

R.A. ASKEY
University of Wisconsin

W.J. CODY
Argonne National Laboratory

J.E. DENNIS
"Rice University

W. GAUTSCH!
Purdue University

S. KARLIN
Stanford University

P.R, KRISHNAIAH
University of Pittsburgh

J.N. LYNESS
Argonne National Laboratory

C.C. PAIGE
HeGill University

J.L. SNELL
Dartmouth University

G.W. STEWART
University of Maryland

DONALD E. AMOS
Sandia National Laboratories

K.O. BOWMAN
Union Carbide Corporation

JAMES A, CADZOW
Virginia Polytechnic Inst.

PRINCIPAL SPEAKERS
(Fifty-Minute Lectures)

"Gamma and Beta Functions From Euler to Sefberg
and Their Orthogonal Polynomials"

"Preliminary Report on Software for the Modified
Bessel Functions of the First Kind”

"Inside Optimization Routines"

"Special Functions: Computational Considerations"
"Various Methods for Calculating Family Correla-
tions With Variable Family Size"

"Computations of Multivariate Distributions"

"The Calculation of Triconometric Fourier Coef-

ficients"

"The General Gauss-Markov Model and the Singuiar
Value Decomposition"

"Random Walks and Electric Networks"

"Matrix Perturbation Theory and Linear Regression"

INVITED SPEAKERS
(Hal f-Hour Talks)

"Computation of the Central and Noncentral F
Distributions"

"Models for Approximating the Percentage Points of
Distributions"

"Autoregressive-Moving Average Spectral Estimation:

A New Effective Modeling Procedure"




GEORGE CYBENKO
Tufts University

ROBERT B. DAVIES

Univ. of Califormia, Berkeley

CHARLES F. DUNKL
University of Virginia

ROY S. FREEDMAN
Hazeltine Corporation

MICHAEL GHIL
Courant Institute

ASHIS SEN GUPTA
Stanford University

KEVIN W.J. KADELL
University of Wisconsin

LOUIS KATES

S.K. KATT!
University of Missourt

FRANKLIN T. LUK
Cormell University

WALTER R. NUNKN
Center for Naval Analysis

PAUL SPECKMAN
University of Oregon

N.M. TEMME
Mathematisch Centrum,
THE NETHERLANDS

DAVID THOMSON
Bell Laboratories

MARIETTA J. TRETTER
The Pemmsylvania State Univ.

"The Efficient Solution by Orthogonalization of
Linear Prediction Problems for Stationary Time
Series”

"Maximum Likelihood Estimation"
"Discrete Orthogonal Polynomials"
"Random Walks and Statistical Communication"”

"A Stochastic-Dynamic Model for Giobal Atmospheric
Mass Field Statistics"

"On the Applications of Special Functions in Tests
for Standardized Generalized Variances of Multi-~
variate Normal Populations of Possibly Different
Dimensions"

"The Selberg Distribution”

"The Zonal Polynomials of Multivariate Analysis as

Special Functions"

Topic: Infinite Divisibility
"The Communality Problem for Stieltjes Matrices”
"The Laguerre Transform"

"Spline Smoothing and Optimal Rates of Convercance
in Nonparametric Regression Models"

"Incomplete Gamma Functions, Numerical and Asy-ptoti-

cal Aspects for Evaluation and Inversion"
"Applications of Spheroidal Wave Functions tc "ime
Series Analysis”

"Absolute Error Bounds for Edgewcrtn Asymi.of..
Expansions"




E.J. WEGMAN
Office of Naval Research

RODERICK WONG
University of Manitoba

"On Computer Architectures for Statistical

Algorithms"

"Some Applications of Asymptotics in Statis-

tics"

TENTATIVE SCHEDULE

This is a tentative schedule and is subject to charge.

Thursday

R

10-2-80 9
9:
10:
:00-12:00 A.M,

00-9:30 A.M,
30-10:30 A.M.
30-11:00 A.M,

:30-2:30 P.M,
:30-3:00

o

3:00-4:00 P.M.

Friday

Saturday

{0-3-80 9:
10:
10:

:30-12:00 A
:30-2:30 P
:30-3:00 P,
:00-4:00 P

10-4~80 g:
10:
10:

:00-4:30 P.M,

00-10:00 A.M.
00-10:30 A.M,
30-11:30 A.M,

z =z =z z

:00-4:30 P.M,

00-10:00 A.M.
00-10:30 A.M,
30-11:30 AM,

INTRODUCT ION
C.C. Paige
Coffee

George Cybenko
James A. Cadzow

S. Karlin
Coffee

S.K. Katti
K.O. Bowman

Contributed Papers

J.E. Dennis
Coffee

Franklin T. Luk
Robert B. Davies

Contributed Papers
P.R. Krishnaiah
Coffee

Louis Kates
Kevin W.J. Kadell

Contributed Papers

J.N., Lyness
Coffee

Paul Speckman
Michael Ghil
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Monday 10-6-80  9:00-10:00 A.M.
10:00-10:30 A.M.
10:30-11:30 A.M.

11:30-12:00 A.M,
1:30-2:30 P.M.
2:30-3:00 P.M,
3:00-4:00 P.M,

4:00-4:30 P.M.

Tuesday {0~7-80 9:00-10:00 A.M.
10:00-10:30 A.M.
10:30-11:30 AM.

{{:30-12:00 A.M.
}:30-2:30 P.M.
2:30-3:00 P.M.
3:00-4:00 P.M,

4:00-4:30 P.M,

Wednesday 10-8-80  9:00-10:00 AM.
10:00-10:30 AM,
{0:30-11:30 A.M.
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J.L. Snel!
Coffee

Roy S. Freedman
David Thomson

Contributed Papers
G.W. Stewart
Coffee

£.J. Wegman
Ashis Sen Gupta

Contributed Papers

w.J, Cody
Coffee

N.M. Temme
Roderick Wong

Contributed Papers
R.A. Askey
Coftee

Charles F. Dunkl
Marietta J. Tretter

Contributed Papers

W. Gautschi
Coffee

Donald E. Amos
Walter R. Nunn
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Abstracts of Talks by Principal Speakers for the Conference on Applications
of Numerical Analysis and Special Functions in Statistics:

R.A. Askey
University of Wisconsin

"Gamma and Beta Functions From Euler to Selberg
and Their Orthogonal Polynomfals"

Many of the classical orthogonal polynomials first arose in a probabilistic
or statistical setting. Lagrange discovered Legendre polynomials and their
recurrence relation while solving a discrete probability problem. Laplace
used Hermite polynomials extensively in his book on probability theory.
Fisher rediscovered the discrete Chebychev polynomials while fitting rain-
fall data. Fisher's representation for these polynomials was different

than Chebychev's and could have led to the discovery of an important set cof
orthogonal polynomials related to the 6-j symbols of angular momentum theory
if anyone had seriously looked at his work. From these orthogonal polynom-
ials it is easy to find the three term recurrence relation for

_ ¢ n 2 n+k 2
SRR N

which was used in the first proof of the irrationality of £(3). In a com-
pletely different field, statistical mechanics, R.J. Baxter has recently
solved another two dimensional model (the hard hexagon) and he needed the
Rogers-Ramanujan identities to compute a limit associated with phase transi-
tions. These identities were discovered by Rogers while studying some
polynomials orthogonal with respect to measures that generalize the symmetric
beta and normal distributions. A brief outline of these beta functions will
be given and then similar integrals in several variables will be considerez.
After work of Wishart, Fisher, Hsu, Wilks and Ingham in statistics and Siegel
in number theory, the first real break-through was made by A. Selberg in 1Guk,
but his work was lost for almost thirty-five years. Mehta and Dyson extenied
Wishart's work to other classes of matrices and came up with a beautiful cen-
jectured extension of the normal integral. This conjecture is easy to prove
from Selberg's integral. Many new conjectures have been formulated in the last

year or so, A few of these will be mentioned.

< e




W.J. Cody™
Argonne National Laboratory .

"Preliminary Report on Software for the Modified
Bessel Functions of the First Kind"

In our experience programs which evaluate Bessel functions of various kinds
are requested more frequently than programs for any other special functions.
This is partially because of the importance of these functions, and partially
because of the lack of high-quality transportable software for their evalua-
tion. This report on the modified Bessel functions of the first kind is ths
first of a series of projected reports surveying available Bessel function
software and laying the foundations for the development of a collection of

transportable Bessel function programs.

After brief discussions of relevant analytic properties of the Bessel func-

tions, important computational algorithms derived from them, and desirable

properties of good numerical software, we give capsule appraisals of eleven ,
diverse contemporary programs or program packages for the I 3essel functicns.

We then describe a modification of one of the more promising programs to

improve its performance and extend its capabilities, Finally, this extended

program and one other with similar capabilities are examined in greater

detail to determine whether they are candidates for inclusion in the proncsad

package.

John E. Dennis
Rice University

"Inside Ortimization Routines"

Applied statisticians often find library subroutines for unconstrained minimiza-
tion useful. This talk will attempt to explain the ideas implemented in ths
best routines. We will also mention some current optimization software reszzzrch

directions. X

*Work perfecrmed under the auspices of the U.S. Department of Energy.
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Walter Gautschi
Purdue University

"Special Functions: Computational Considerations"

We discuss computational aspects of infinite series and continued fractions
in the context of evaluating special functions, in particular, probability
distribution functions. Questions of major concern, with regard to infinite
series, are internal cancellation of terms and stopping rules for truncat-
ing the infinite series. We introduce appropriate terminology and theory,
and give applications to certain power series related to the incomplete
gamma function. We then recall briefly how various types of continued frac-
tions arise through correspondence (or association) with formal power series,
or via second-order linear difference or differential equations. We advocate
Euler's method of computing a continued fraction as infinite series. A new
theorem is presented concerning the convergence behavior of continued frac-
tions with real elements, and we show how it can be used to explain the
empirically known effectiveress of Legendre's continued fraction for the
complementary incomplete gamma function T(a,x), considering that conver-
gence, in theory, is only sublinear. We also draw attention to the compu-
tational advantages of a continued fraction of Schlomilch for the incomplete

gamma function vy(a,x).

J.N. Lyness
Argonne National Laboratory

"The Calculation of Trigonometric Fourier
Coefficients"”

A technique for the numerical approximation of sets of Trigonometric Fourier
coefficients J é f(x)ezﬂirX dx; r = 0,1,2,... based on a common set function
values f(x), i =1,2,...,m was described. The underlying theory is based

on subtracting out an approximation to the truncated Euler expansion which can
be integrated analvtically. The method is restricted to functions having a high
degree of continuity, but can be used when only irregularly spaced functicon

values are available.

The calculation of individual Fourier Coefficients of an analvtic functiecn by

using contour integration in the complex plane was also discussed Driefly.
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C.C. Paige
McGill University ,
CANADA \ i

"The General Gauss-Markov Model and the Singular
Value Decomposition"

The problem of finding the best linear unbiased estimate B (BLUE) for the
general Gauss-Markov linear model (y,XB,O2Q) may be formulated as the con-

strained linear least squares problem
P T .
(1) minimize u'u subject to y = X8 + Lu,

where LLT = 0 1is the Cholesky decomposition of the given nonnegative definite
symmetric matrix §. When § 1is positive definite L is nonsingular, and the
singular value decomposition of L-lX could in theory be used to solve this
problem. However, such an approach would not in general be numerically reliable,

and is not clearly defined when L 1is singular as can happen in practice.

A simultaneous decomposition of L and X 1is suggested which is based on '
numerically reliable orthogonal transformations and leads immediately to the

solution of (1). This decomposition is valid for all * znd X with the

same number of rows, and when L 1is nonsingular it immediately gives the

singular value decomposition of L_lx, but without using the inverse of L,

Thus the decomposition is an appealing generalization of the singular value

decomposition, and it solves an important class of problems as well as exhibit-

ing their geometric structure.

J. Laurie Snell
Dartmouth College

"Random Walks and Electric Networks"

The connections between potential theory and Markov processes are well-known
and has very much influenced the direction of probability theory in recent
years. There are still things to learn from these connections. We show this

by discussing Peter Doyle's use of Rayleigh's short-cut method to decide if

discrete random walks are recurrent or transient. For this, one first identi-

fies the walk with an electric network. Recurrence corresponds to infinite
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resistance to infinity and transience to finite resistance to infinity. The

network is then modified to obtain a simpler network. Two kinds of modifica- \
tions are considered — shorting and cutting. Sno.tiing decreases the effective
resistance to infinity. Thus if the network, simplified by storting, is

recurrent so is the original. Cutting branches can only increase the effective
resistance. Thus if the network, simplified by cutting branches, is transient

so was the original this technique is illustrated by proving recurrence of

simple random walk in two dimensions and transience in three dimensions.

G.W. Stewart
University of Maryland

"Matrix Perturbation Theory and Linear Regression"

This talk surveys the implications of first order perturbation theory for the '
linear regression problem with errors in the variables. It is shown how sets

of regression diagnostics measuring the effects of these errors can be easily {
computed from quantities formed in the course of solving regression problezs.
It is also shown that under a specific model for the errors, the classical

F-tests are unaffected.




ABSTRACTS OF THE 30-MINUTE SELECTED TALKS




Abstracts of Talks by Invited Speakers for The Conference on Applications
of Numerical Analysis and Special Functions in Statistics:

Donald E. Amos
Sandia National Laboratories

"Computation of the Central and Noncentral F Distributions"

ABSTRACT
Recursion relations suitable for rapid, significant digit computation
are derived for the cumulative distribution of F’ = (X/m)/(Y/n) where X is

XQ()\’m), Y is ¥°(n) with X and Y independent. The cumulative for F’ is given
by Bayes theorem,

e’ < tlmnnt) = 76,00 < m/alY = p(ay (1)
and where the cumulative noncentral %2 (\,m) is
x
2
6, (x=x) =3 [) (%)?/ e~ W2)/2y (Jz)er (2)

and the x?(n) density is given by
' e ¥/2,7i*nf2 yz o0
2n/21‘(n/2) nzl .

Ip is & rodified Bessel function of the first kind with p = (=-2)/2.
If we integrate (1) by parts using (2) and (3), we get .

rly) = (3)

2 (-]
P(F'<f)=1- g(%)p/ M2 [ e/2p2 () eadl o
. . o .
~ ()

)P/ ze')‘ /2 J‘

0

-8

>R

-az/2 p/2. , =y [(n/2,2/2) ..
e 2z Ip(.‘a.x‘) T(a/2) dx
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where a = fm/n  and the incomplete gamma functions are defined by

the integrals

) T ) * s>0
-t - - -
. Y(a’x) = I e t‘ ldt P I‘(e.,x) = I e tt‘ ldt ]
(] : x x2 o .

a, while depending upon m and n, is treated as an independent variable.

The recursive nature follows directly by applying the forward

recursion relation

-x
e e L o Q
to (&) since, with F the cuzuletive norzal,

F(3,%) = & erfelR) = 2F F(-/) ©
and T =e* , x20

can be identified. If we maltiply (5) by the factors of (L) and
integrate we get '

Pov1 = PB + Qg . | (7)
where
p/2 23
_afs -7/2 | =az/2 p/2 T(g,z/2)
PB"?‘-(X) ¢ J;e AT R R
(8) .
p/2 A2 yn
o - 55() e | A A

and Pb = P(F' < f) vhen § = n/2, 1In order to exploit (5), QB must
be evalusted. A change of varisbles in (8), z = t?, produces a
form for QB vhich can be identified by
’ [
- v r(m
Se‘t tH J‘Iv(bt)dt= b 2)

2
Y 131aY vl -
A awlauw T(wl) (2 ’ ’ Lel . ’

(9"

e>0,b5>0 ,




u+v > O, where & is the confluent hypergeometric function defined

by the series
. . . '
(a), X
#(a,c,x) = z : (c)k % ¢ £0,-1," (10)
k=0 & | o

with T :
(o =1 5 (2, = aand)e-(an-1) =L | yzy,

Notice that if a is a negative integer, the series reduces to a poly-
nomial, while for c¢ = a, ¥(a,a,x) = exp(x). Thus with a = J(1+a)/2,
b = ok, M = 28+p+2 and v = p in (9), Q becomes

g \PHL M [2(240)]
= (8- & T(p+p+1) -p X
%~ (l*“) : (1+q)f  T(B+1)T(p+l) Le "¢(p+p+1,p+1,0)] (11)

where p = Aaq/[2(1+a)] and the scaling e P has been introduced to
eliminate the exponential growth in §,

0,8
e +1 -
Q(P*B“l,P*l,p) ~ T(p+o+l for p ©
Now the recursion relation
ad(a+tl,c,x) = (2a-c+x)¥(a,c,x) + (c-2)d(a-1,c,x) (12)

with & = p+8+1, ¢ = ptl, x = p can be used to recur forward with :
(7) and (11), giving

T " %t |
Agey = [A/(0+2)] « [(p+8+1)/(p+1)]
.8 B (13)
. tgs1 = [(p+2peleo)sy - 8, 1/ (prpel)

o1 = g1 Rga

where

Qﬁ = e-DQ(p+B+l’p*1:D) ’

p+tl _-2/[2(a+1)]
- [ € T +1
AB = (l+a.) (p+g+1)

(e)f D61




In order to use these recurrence relations, we must have Pl’ Qo,
61’ when n is even and Pi/2’ 6_1/2, §1/2 when n is odd. - If n is even,

Pl’ io, Ql are elementary functions. However, when n is odd, Pl/2 is

a special doubly non-central t-distribution for which series representa-
tions with error bounds are given. §-1/2 and §1/2 are identified in
. temms of derivatives of I Bessel functions or error functions depending
. on whether m is even or odd. Computational techniques and stability
considerations associated with the recursive computation of the $ func-
tions are also discussed.
A quadrature for significent digit computation of P based on (k)
is also possible to cover wide ranges of parameters. The integrand is
bell shaped with a single maximum at zo. The idea is to locate zo from
a derivative calculation, estimate the spread ¢ of the bell in terms of
a fitted normal distribution and integrate to the left and right in steps
of & 20 or 30. Since the integrand is positive, no losses of significance
occur due to subtraction. This procedure tekes advantage of high quality
routines for the special functions while computing only the dominant

contributions to the sum. The computation of z. is facilitated by sharp

0
algebraic estimates of transcendental functions arising from the derivative

calculation.




K.0. Bowman®™
Union Carbide Corporation

"Models for Approximating the Percentage Points of Distributions"

ABSTRACT

Many statistics in distributions such as the sample skewness
(vby = my/m3’2), kurtosis (b, = m,/m3), sanple standard deQiation,
Studentis 1, present formidable mathematical problems especially under
non-normaiity. Even under normality, only recently (Mulholland,
Biometrika 1977) has the null distribution of vb, for moderate sized

samples -=2n found, although acceptable approximations have been given

Mulholland nzl followed an early study by R. C. Gearly (Biometrika
1947), and us2d a careful analysis of density discontinuitics by
reference to an integral eguation for the density for varying sample
size. The anplication of the Gearly-Mulholland approach even to a
fairiy simple case such as the null distribution of kurtosis appears to
be completely out of reach mathematically.

When a set of at least four moments of a statistic exists, several
approximating models for the probability integral are known.

OQutstanding is the Pearson system, introduced by Karl Pearson, and
extensively studied from a practical point of view under the leadership
nf the late E. S. Pearson. The Pearson system (density y) arises from

the differential equation

"Research sponscred by the Applied Mathematical Sciences Research Program,
Office of Eneryy Research, U.S. Department of Energy under contract
W-710%-en;-26 with the Union Carbide Corporation.
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and a member is uniquely determined from (81,82), scale and location :
being indspendently adjusted. In view of the many types which can
arise, tabulation of percentage points (a standard set being 0.50,
0.75, 0.5C, 0.99, 0.999 and corresponding lower levels) for a limited
domain of (/a,,8,) has only been completed in recent years, and the
corrasponding computer proaram makes heavy demand on small computer
facilities.
Complataly different approaches use transformation systems. The
Johnson system of curves (Biometrika 1949) considers the mapping
7=y + §f{y, where Z € N(0,1). Here f(y) = log y produces the log-
normal, f(y) = log (y/(1-y)) produces the Sg system, and
f(y) = sinh~1{y) produces the Sy system. The parameters y, § are :

determined from the skewness and kurtosis of the distribution to be

approximated, and involve intractable mathematics, especially in the
case of Sg, which requires evaluation of four transcendental
integrals.

Another transformation uses T(x) = x81 - (1-x)62
(introduced by Tukey, and used on empirical data by Ramberg,
Tadikamalla, Dudewicz, and Mykytka, Technometrics 1979) where x is
wniform on the interval (0,1). _

For the Pearson system we have introduced approximations for the
standard percentage points at some 11 levels in the form of rational
fractions (m,(8,,8,)/m,(B,8,)) of the degree 3 in the parameters

By» B, for a domain for which 8, < 4. A linear formulation was used
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over sets of 19 points in the (8,,8,) plane, the minimum error set
being chosen. Rather than use a 4th degree version, we considered the
segments 0 < 8, < 1, and 1 < B, < 4, giving results with error less
than 0.5%.

With the Johnson system, we have to determine as simply as
possible, the values of y and & from those of g, and g,. From a study
of centours, it turns out for Sy that a rational fraction in
(8,,8,) for the variable {8, - 1/,(uw* + 2w? + 3)}/B, is likely to
succeed, u 2cing equal to exp(1/62). The analysis of the Sg system
involving aw<ward quadratures is more demanding, for & increases to =
as the normz} point is approached, whereas v tends to = on the log-
normal line. A typical model used is for example

6 = (82-81—1)efl(BZL—82+log(1+Bll9))fz
where f,,f, are polynomial in (8,,B,) of degree 3. Errors in the
approximation to the transformation (which once found yie]d_gll
percentage points in terms of those for the normal) have been reduced
to a few percentages for the three domains 0 < By <1, 1 < 8, <4, a:ud
4 <8, <09

ke have confined attention to the problem of approximating
percentage points for theoretical statistics whose first few moments
exist; note that in many cases asymptotic series may be required using
surmatory techniques to establish moments evaluations. We nearly
mention the corresponding problem for empirical data which though
simpler from one point of view, since moments and percentiles are

always available, is much more difficult when inevitable sampling

errors are allowed for.




James A. Cadzow
Virginia Polytechnic Institute

"Autoregressive-Moving Average Spectral Estimation:
A New Effective Modeling Procedure"

ABSTRACT
In various signal processing applications, knowledge of the spectral
density assoclated with a zero mean weakly stationary random time series

{Xn} plavs a prominent role. This spectral density is formally given bv

s = [ r (eI (1)

n=- o

and is recognized as being the Fourier transform of the time serics'
covariance sequence

_ o ok <5
rx(n) = L{xmkxk } ()

where E denotes the e¢xpected value operator. Clearly, the determination
of the spectral density entails a complete knowledge of the infinite
extent covariance sequence. Unfortunately, these covariance elements are
almost never known in typical applications, and, one must thereforc resort
to estimation techniques for determining an appropriately accurate
estimate of Sx(w). This estimate is generally based on a finite set cof

contiguous time series observations as designated by

This research was supported in part by the Statistics and Probability
Program of the Office of Naval Research under Contract N0O0014-80-C-0305
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Xis Koy o ooy Xy 3)

Unless some constraints are imposed upon the time series' fundamental
nature, however, there exists a basic incompatability in estimating
spectral density (1) which depends on the infinite set of covariance
elements from the finite set of observations (3). This difficulty is
alleviated by postulating the following (p,q)th order ARMA model for the

time series

p q
x(n) + ¥ akx(n-k) ) b, € (n-k) (%)
k=1 k=0

where the unobserved excitation {e(n)} is taken to be a zero mean white
noise series of variance one. As proven by Wald, any continuous

spectral density can be approximated arbitrarily closely by an ARMA model
if the order integers p and q are selected large ennugh.

The problem to be investigated is then that of estimating the o
hk coefficients of this ARMA model from the given set of time scrics
obscrvations (3). Although there presently exist procedures for accezplish-
ing this task (e.g., sce refs. [1]-[5]), these procedures arc not verv
effective in the case of small data lengths (i.e., N). In this lecture,

a procedure which has been found to be effective for both short and long
data lengths shall be developed. A brief outline of the procedure's
salient features will now be given.

The procedure for estimating the ARMA model parameters first cntails
multiplying both sides of relationship (4) by x* (n-m) to vield the "basic

error elements' as given by

P
e(m,n) = x(n)x*(n-m) + Z akx(n—k)x*(n—m) (52
k=1
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q
= ) bkc(n—k)x*(n—m) for m+

N (5b)
k=0 N

in which * denotes the operation of complex conjugation. It is not difficult

to show that if the time series 1s an ARMA process of order less than or

equal to {p,q), then the basic error elements are each zero mean random

H variables over the range shown on the m and n variables. With this in mind,
a logicai selection for the a, coefficients would be one that causes each

of these basic error elements to be as close as possible to thelr expected

value of zero. This objective can be achieved by minimizing the following

quadratic functional

f(a, ) = etve (6)

1)
where e is a (N-m)(N-q-1) x 1 column vector whose elements are appropriate
arrangements of the basic error elements (5), W is a nonnegative definite
square matrix and, 1t denotes the operation of complex conjugate trans-
position. This criterion is seen to be a quadratic function of the ay
coefficients through the basic error element relationship (5a). Once the
optimal set of ay coefficients have been thus determined, the moditied
Welch method [6) may be applied to identify the bk coefficients effects

on the spectral estimate.

In this lecture, a more detailed development of this new ARMA model
method shall be given. Morcover, the new method's performance will be
empirically compared to such classical spectral estimation techniques as
(i) the Box-Jenkins ARMA method, (i1) Burg's maximum entropy AR method,
and, (iii) the Periodogram. 1In this comparison, it is found that the new

method significantly outperforms the classical methods.
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If this new method is to achieve its full potential, however, a number of
numerically based issues need further investigation. In keeping with the \
spirit of this conference, these issues will be dwelled upoun and
suggestions solicited. Perhaps the most significant issue that needs
further attention is that of selecting the weighting matrix W in
criterion (6). Preliminary empirical evidence attests to the significance

of this cholce {7].
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"The Efficient Solution by Orthogonalization of Linear
Prediction Problems for Stationary Time Series"

Abstract

The linear prediction problem for stationary time series has
traditionally been solved by forming the normal equations and
solving them by either classical or fast Toeplitz algorithms.
The main obstacle to using orthogonalization has been that that
approach requires an order of magnitude more computations (O(sz)

as opposed to O(Np)).

An O(sz) orthogonalization technique 1is described for
general matrix orthogonalization which yields an O(Np) method in

the special case of 1linear prediction. Orthogonalization is

thereby made competative with the normal equations approach.
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The linear prediction problem for a stationary time series

- AN — e v
e ——

may be formulated as a matrix linear least-squares problem, where \

) the design matrix has a Toeplitz structure.

Specifically, let x (n) be a time series with only

finitely many nonzero terms, so that x(n)=0 for 0<n<N say. The

linear prediction preblem of order p is to find coefficients

ajreees minimizing the expression

p

2 s o =T 0 B L S

- _ ‘ _ 2
Ep Z(x(n)+a1x(nl)+...+apx(np))

A Vo T ki e

where the summation is over all n.

This problem occurs in a variety of applications: Wiener

filtering, stochastic model identification, speech analysis and

synthesis, and geophysical signal processing, to name a few.

Letting
- ] - —
‘ aj |- x(Q)
! .
i . .
a = . b = *
0
{ ap L] \
_ ‘ . N
L 0

- —




- -
0 0 o . . . 0 \
x(0) 0 0 . . . 0 |
x(1) x(0) o . . . 0
x(2) x(1) x(0) . . . 0
® T L
0 0 0 - . . Xx(N-2)
0 0 . . . x(N) x(N-1)
0 0 . . . 0 x (N)
-

the linear prediction problem is equivalent to solving the matrix

equation

in the least~squares sense.

The traditional approach to solving these equations has been

to form the normal or Yule-Walker equations




i
!
|
k
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T
X X a = X
p—

T3
o

P

which is a simple system of equations. Because xgxp has a
Toeplitz structure also, it can be computed in O(Np) opzrations
after which the pxp system requires 0(p3) or O(pz) more for
solution. Since N is always much larger than p, the O(Np) term
dominates. Now it is well known that for small residuals,
solving 1least-squares problems by orthogonization is more
accurate than by forming and solving the normal equations.
However, the orthogonalization of Xp by any of the classical
methods requires O(sz), or an order of p more, steps than the
previously described approach. For this reason,

orthogonalization has not been used to solve linear prediction

problems.

In this paper, we present an orthogonalization technique
which appears to be new, and which is O(sz) for general
unstructured matrices, and streamlines to an O(Np) method for the

special Toeplitz structures that arise in linear »rediction.

It is shown that this procedure 1is the same as the
Itakura-Saito-Burg "lattice method" for 1linear predictive

filtering and deconvolution.

Although a complete error analysis is not presently
available, partial results indicate that the algorithm has good

accuracy properties.
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“Maximum Likelihood Estimation”

ABSTRACT

Estimation of parameters for "non-standard" statistical
problems frequently involves finding the maximum of the
likelihood function or some other function related to it.
Usually analytic solutions won“t be possible and a numerical
method will be required. While a variety of optimizing pro-
grams, available in the standard subroutine libraries can\gé
used, the 1likelihood function has particular properties
which it is worth taking advantage of and at the same time
the statistician has particular requirements which the stan-

dard optimization programs do not necessarily provide.

This paper concentrates on the situation where the 1likeli-
hood function, its first derivative and an approximation to
the second derivative are available. Suppose 6 denotes the
vector of unknown parameters; L(©) the log-likelihooé; A(O)
= dL(e)/d(8), I'(e) = Egla(e)a” ()] = -Egld’L(e)/de®]. T will
suppose -['(0) is used as the approximation to the matrix of

second derivatives.

In some problems, once L has been calculated, not too much
extra work 1is required to obtain A and Mor if L and 4 are
calculated very little work is required to find I as well.

In these situations, it seems especially worthwhile using
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optimization methods that involve L, 4, and ( if the calcu-

lation of L 1is expensive, if the number of parameters is
large, or if the problem is ill-conditioned. Note that M(©)
is non-negative definite (and its being singular usually
indicates an error) so that one”s optimize program need not
take into account the possibility of (@) having negative or

zero eigenvalues. The basic iterative step is

_ -1
O 41 =8 + I (8,)0(8,)
but we have found that some kind of line search, based on L

and A, is advisable.

According to maximum-likelihood theory the wvariance /

C)

covariance matrix of one”s estimates is approximately I
so one would normally want this printed out, or rather, one

wants the standard errors and correlations derived from it.

Once one has fitted a model one will frequently want to test
whether it should be extended by fitting further parameters.
One possibility is simply to program the extended model, fit
it, 1look at the increase in the log-likelihood and so carry
out a likelihood ratio test. But a simpler approach 1is to
carry out Neyman’s C(x) test. For this one still needs to
calculate A and M for the full model but only for values of
© corresponding to the o0ld model. One then calculates A‘!;IA
at the values of © corresponding to the old model. If the

extended model 1is, in fact, not necessary this term will

have an approximately chi-squared distribution.




e

This also provides a very convenient stopping criterion for
the iterative fitting process. We test the hypothesis that

lA at

our current value of © is correct by calculating a*r
each step. However rather than using the critical points of
the chi-squared distribution for deciding when to stop, one

Hﬁ < .001 say. Another way of looking at this

stops when &' %
would be to say that A‘P'lA/Z approximates the possible
improvement 1in the likelihood. In any case the objective is
to make sure the difference between each estimate obtained

and the actual maximum-likelihood estimate is small compared

with the standard error of the estimate.

If one does calculate A‘P-la at each step then the program
can also be used for carrying out a C{(x) test if it can be

run for just one step.

Sometimes A and [ naturally factorize: A = X°Y, M = X°X
where now, perhaps, the components of Y are closely related
to the original observations. In this case one can use a

Householder transformation

ot af2)

2
where R is upper triangular and Q orthogonal so that the
basic update equation becomes ek+1 = ek + R_lzl; the stop-
ping criterion becomes {zl‘zl < .001} and r-l = (rem) L.

This approach can be important when [ is ill-conditioned
and, in fact, there seems to be more justification for it in
the present context than in the usual linear least squares

situation.

B<35




———

B-~36

This Householder approach is also particularly conveniené_\\\\
when one wants to use recursive fitting techniques. That is
when © is broken into two (or more) parts;
- ()
©=le
2

and for each iteration of 92 one selects Gl to maximize the

likelihood.

Considering the selection of the initial values from which
to start the interative process. The techniques we have
considered so far may not be effective if one is a long way
from the correct value. Global searching may be appropriate.

However we may be able to begin model fitting with a very ¢

simple model involving only one or two parameters which may
be able to be estimated by other means. In particular, all
"treatment effect" parameters can be set to zero. After fit-
ting the simple model other parameters can then be 2dded and
fitted until the full model is fitted. One important'attri—
bute of the optimize program would be the ability to fix

certain parameters and temporarily eliminate them from the

fitting process.

Our comments have been specifically for the likelihood func-
tion. In some statistical problems it is appropriate to max-
imize some other function, W(®) say. A maximum likelihood

program can be applied identically to the maximization of

such functions which satisfy the usual regularity conditions

and also EQIGW/del = 0, coveldw/de,d(L—W)/del = 0.
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"Discrete Orthogonal Polynomials"

ABSTRACT

The binomial and hypergeometric are important discrete distributions.

The orthogonal polynomials for the one-variable case are the well--known

| Krawtchouk and Hahn polynomials. By considering some several-variable

analogues one is led to another family of hypergeometric polynomials

expressed as balanced ,F,-series (appearing in physics as 6-j symbols).

Special cases of these give new representations of Krawtchouk and Hahn

polynomials associated to symmetric distributions (that is, binomial with

- 1 . a a
p = %, hypergeometric (x)(N—x))'

1. The Hahn polynomials:
For integer parameters a,b,c we have the hypergeometric distribution
(i)(cfx), with max(0,c-b) < x < min(a,c). The family of orthogonal poly-

nomials for this weight is E (a,b,c,x) = T (-1 j Ty (b-mtl) , (a-m+l)
g . ZJ=O< > (¢ ); 23

il SR T g ® < e I NI i N e

i F0 e = (D) o) P, (R LT Gy 0 < n < minga,b,c,atbc).

i This is a useful notation for the Hahn polynomials (see Karlin and McGregor,

Scripta Math. 26 (1961), 33-46) and the relation is

E;(2,b,¢,%) = (-1)"(-a)_(-¢) Q (x;-a-1,-b-1,c)

o i

(the present notation exhibits certain symmetries, and is polynomial in the

parameters). These functions appear as intertwining functions on the syrmetric

group (consider the set of 2x2 contingency tables with row totals a and b, and

)
'. i
i
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column totals c and a+b-c; for any permissible arrangement of a+b+c objects
in a 2x2 array, there is a subgroup of permutations preserving rows, and
another preserving columns). This fact has been used by C.D. (SIAM J. Math.

Anal. 9 (1978), 627-637) to derive product and addition (b = ¢ only) formulas.

2. Hahn polynomials in several variables:

For positive integers r, 21,22,...,£n we have the hypergeometric

L L
distribution(}f) an with Zixi = r. A set of orthogonal polynomials
1

n
is given by
n-1 n n-1 j-1 n-1
Hj=l Emj(zj’zi=j+l 2,2 ) m, T - .Z Xy - ) mi,xj)

i=j+1 i=1 i=j+1

where L TEEREL are nonnegative integers subject to various constraints

n-1

(see §1). The product is a polynomial in x X of degree zimi

177" n-1
{Pearson's xz—statistic for the 2>n contingency table can be expressed as a
weighted sum of squares of the linear polynomials). These polynomials were
studied by Karlin and McGregor (pp. 261-288 in '"Theory and Application of
Special Functions", R. Askey, ed., Academic Press 1975) in the Q-form for

a genetics application, with the Qi's being replaced by negative real nucbers.
The present situation is associated to the permutation groups of a 2xn
contingency table (column totals 21""’2n row totals r and Zi Ri—r). The
given basis depends on the ordering of the variables, thus a rearrangement

will produce a different basis. The connection coefficients between two of
these bases form a set of orthogonal transformations, one for each total degree
zimi. In the case n = 3, given the degree N, there is one free parameter ny
(note m, = N-ml), so the connection coefficients form a family of orthogonal

functions in one variable. These were determined to be (C.D., Pacific J. Math

to appear) balanced 4F3—polynomials, and will be discussed in the next section.
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3. The discrete 4F3-polynomials:
For an integer N and parameters a,b,c (positive integers in the

contingency table or group case), define a weight function

(-a)y_ (-0 (-N) (N-a-b-c-1) (-1)
x!(—b)x(x-b—c)N

btc-2x+1
W(x;a,b,e) = (b+c—x:1 )

(where x = 0,1,...,N and a-N < x < min(b,c,b+c-N) if a,b,c are integers)

and the hypergeometric polynomial

-k,k-a-c-1,-x,x-b-c-1
pp(x;a,b,e) = Fal g ¢ -acb-cen-1 3T

(a balanced series; sum of denominator parameters exceeds sum of numerator
parameters by 1), a polynomial of degree k in (x-(b+c+1)/2)2. The

orthogonality relation is
Exw(x;a,b,c)pk(x;a,b,c)pg(x;a,b,c) = 6k£/w(k;b,a,c).

J. Wilson (SIAM J. Math. Anal. 11 (1980), 690-701) showed that the Racah
6-j symbols could be expressed as 4F3-polynomials (his parameters are different,
and he also found continuous orthogonality relations, N replaced by a real

number) .

4, Special cases of the 4F3—polynomials:

Recognizable and interesting distributions can be obtained by taking

b+c+l to be an integer, say -s, with s > 0. Neglecting constants one obtains
(-¢)

8y 2 H)—2~ A(s,x), x = 0,1,...,N where

the weight (N+s+x N-x (c+s+l)x

A(0,x) = (2-6_), and for s > 1,

x0

A(s,x) = (x+1)s_1(2x+s)/s!, the weight being positive for -s-1 < ¢ < O.
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In general one obtains polynomials not in x, but rather in (x+s/2)2. However
in special cases (s = 0, -1 <c < Oor s >1, ¢ = -8/2) one can piece

together two 4F3-families to get one family of polynomials in x, a situation
analogous to the quadratic transformation for Legendre polynomials, relating

(O’—%)(sz-l) and P

1
n 2n+1(x) to xPéo’ﬁ)(sz—l). The symmetric Hahn

PZn(x) to P

polynomials (weight (:)(cfx)) form an example of this. Here is the even case

(c = 2N) (the odd case ¢ = 2N+l involves s = 1):

(9 (N-a)_ (-n,n-a-z,n-x,x.u_ 1)

an(x;-a—l,-a—l,ZN) = (%‘N)n(-a)n 4F3 -N,%,N"a
Nex (3/2)n(N-a+l)n -n,n-a+k, N-x+1,x-N+1
Qqyq (x3-2-1,-a-1,21) =( N ) G0 _(-a) 4F3 N41,3/2,N-a+1 T

Let a = -1 to get the discrete Chebyshev polynomials (discrete uniform
distribution), a = 2N-% for the weight (32), or let a + « to get the

symmetric (p = %) Krawtchouk polynomials, for example

(55)n -n,N-x,x-N
Kop (%375, 20) = G 2\ Nk 31
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"Random Walks and Statistical Communication"

ABSTRACT

1. INTRODUCTION
We discuss an application of special function techniques to
a problem that occurs in the analysis of bit error probabilities in

a certain digital communication system. Let

+ (w-m)

os cg + (w-~ nﬂ)

Je

=1

n 36
Z;c.
ZETZL

n

B =
A, =
B,

C 0S8

i

a = |A|
b= | B8]
P, (mn) = Prob (b>a)
P, (mn) = Pobk (Bx>Ax)
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In the above expressions, the 8; are independent and uniformly
distributed random variables on [ oxzﬁﬂ i n, m, ware positive

integers with n, m £ w and j = \/ -1, The problem is to determine

P, (m, n) and P2 (m, n).

These probabilities can be interpreted in the following sense.
We are given two drunks: each drunk takes a unit step in an arbitrary
direction, The origin is fixed at the point where drunk B starts;
drunk A is given a head start of (w-n) steps in the x - direction.
After a certain time, drunk B takes n random steps and drunk A takes
m random steps (so the total number of steps that drunk A takes is w). _.
Py (m, n) is ;he probability that drunk B is farther from the origin
than drunk A. In this case, "farther from" is interpreted to mean
that the resultant magnitude of drunk B is greater than the resultant
magnitude of drunk A. If we are only interested in how far the drunks
have traveled in a certain direction (without loss of generality, the
x - direction}, then the probability that the sum of the x - components
of drunk B is greater than the sum of the x - components of a drunk A
is given by P2 (m, n). A discussion of the original interpretation
in the communication system investigated is given in Sect?»n 4. It
suffices at this point to denote P1 (m, n) as the probability for the

non-coherent case and P2 {m, n) as the probability for the coherent

case. Expressions for Pl (m, n) and P2 (m, n) will be derived below.
Simplifications involve the use of Bessel function identities as well

as the use of generalized functions.




-

2. NON-COHERENT CASE
=__ie
Let jZE-I(C. . It is well known that the characteristic

function of X in polar coordinates (see reference (1)) s
¢ (¢) = J, (k¢)

The addition of independent random variables yields (with k = w-m)

B (t) = T.W(€) T, (ke)

The first factor is the characteristic function of the sum of m
random phasors. The second factor is the characteristic function
of the "head-start." We note that the head-start can be taken in an
arbitrary direction of length k if all the other random angles are

taken with respect to the first head-start angle as a reference.

A similar argument shows
n
¢ (¢) = T," (2)

The density and distribution functions of a and b follow from Hankel
Transformations and suitable Bessel function identities. Conseguently,

an %gpressigg for P, {m, n) is o0 ,
[dy (3 T0n 170 Tlee)dt [y Ty 15 dec

The innermost integral (with respect to u) is the density function
of b. The middle integral (with respect to t) is the cumulative
distribution function of a; i.e., the probability that a is less

than vy.

After rearranging terms we note that

fmg"% Liye) Tly)dy = S (e-t)




B-44

This formula can be proved by using the discontinuous integral of
Weber and Schafheitlein. 1In reference (2) it is equation (29) on
page 51. There seems to be a typographical error in the convergence

criteria in this equation. It should read
Re (D+u-p+1) >0

The parameters of interest are _P FAL =0 ang 7) =1 .
In this case, the hypergeometric function is completely degenerate
and the Weber-Schafheitlein integral reduces to the step function
represented in reference (3) as equation (9), page 406. If we
differentiate this expression twice, we obtain the unit doublet as

indicated above. The integrél for P1 (m, n) simplifies to
ol

F o nen 41170] -

c

This use of the Weber-Schafheitlein integral seems to have first
been used by Doyle (see reference (4)). Kluyver uses the integral
to derive an expression for the density function of b (see ref-

erence (3), page 419).

After an integration by parts we obtain

m+4#

o)
Fl(”\,V\): n l.— K jJ; («t) J. (¢y d¢
n+m 5
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The last integral cannot be simplified further. For n and m large
we can obtain asymptotic expressions for the density of a and b:
b is asymptotically Rayleigh distributed and a is asymptotically

Rice-Nakagami distributed. We find that

N ~ K/ Cnam)
P (WA V]) ﬂ.ng n+m

a result which agrees exactly for k=0.

3. COHERENT CASE

In this case, we do not deal with magnitudes of phasors and
do not calculate densities with Hankel Transforms. Consequently,

the following characteristic functions for Ax and Bx are
K¢
Ay
"
¢, &) = & (£

After taking Fourier Transforms and making use of the identity

o]
s j s k& dx = & (&)
m

we find that + N (47) "
P Y= 4 Cos ¢ (uk) J, (E)d ¢ 420 _
‘;CM)H ) - A
0“ o - o [+ | |
— ._.‘_.Z J _405 f(k-‘() LMCf) J-b“(‘y)_slu kl‘/; C/'é JIL
1} J o Ve ) g

which after simplification yields




< " T
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od
mtn . .
rz (”‘)"}: 5‘:- ,T;:J Je (7’() Sin ( )‘/z(_

&

For n and m large, a and b are respectively asymptotically non-zero

and zero mean gaussian distributed. Consequently
o) =
| . (Z(-P() C;Q'L
\ — € de
f; <b"’") as jjm. VaTré o

with gt m+n)/a .

This result also agrees with the exact expression for k=0,

4, INTERPRETATION FOR STATISTICAL COMMUNICATION

In our system either a "mark" or "space" signal is transmitted,
both events being equally likely. We assume a mark is transmitted.
The orobability of error is given by Prob (receive space given that
a mark was transmitted). This probability depends not only on the
transmission media but also on the encoding and modulation schemes.
We will assume that a mark (or space) is encoded onto a set of w
waveforms, with each waveform suitably represented as a phasor. We
will assume that a phase reference is known at the receiver. The
effect of noise is to change the amplitude and phase of a particular
waveform. Intuitively, the more waveforms, the less likely it will
be that noise will disrupt all w waveforms. At the receiver, each
particular waveform will be detected and "hard-limited" in that the

magnitude of a received phasor will be normalized to unity if that
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magnitude exceeds ; certain threshold. This minimizes the effects
of strong interference; information is still contained in the phase.
We assume that in the w mark waveforms, m contain interference and
in the w space waveforms, n contain interference. In the non-
coherent case, a mark is decided if the magnitude of the resultant
phasor sum for the mark waveforms is greater than the resultant
phasor sum for the space waveforms. In the coherent case, we
compare the sum of the values of the components in each waveform.

The error probabilities are then given by Py (m, n) and P2 (m, n).
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(1) Nesenbergs, M., "Signal Amplitude Distribution for Stationary
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Vol. II; McGraw-Hill Book Co., Inc., 1953,

(3) wWatson, G., A Treatise on the Theory of Bessel Functions,

Cambridge University Press, Cambridge, 1958.

(4) Doyle, W., "An Asynchronous Pulse - Address Scheme Using

Binery FSK," IDA Report R~108, DDL AD 465789, April, 1965.
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"A Stochastic-Dynamic Model for Global Atmospheric

Mass Field Statistics"

ABSTRACT

A model that yields the spatial correlation of atmospheric temperature data
has been developed. It involves the solution of the potential vorticity equation

forced by random noise: -
| J

(V2- ¢, in*8) b(3,8:9) F (>, 6;w) )

rd
where V is the laplacian operator in the unit sphere,)‘ and eare longitude
and latitude,'qb is the temperature and F is white noise corresponding to a
random realization (W .

The spatial correlation I is then computed from

(s, 8 55%,8.)= E[$(),8;0) 00 8,9)]

where £ is the expected value.

Three methods of solution have been tested. In the first method, Eq. (1) was
solved by expansion in spherical harmonics and the correlation function was
computed analytically using the expansion coefficients. In the second method,

the finite difference equivalent of Eq. (1) was solved using a Fast Poisson

*Nationa] Aeronauti
t D

jcs and Space Adiminstration, Goddard S .
Greenbe 207§] p iminstration, Goddard Space Flight Center
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Solver. The correlation function [‘ was computed using stratified sampling of
the individual realizations of F(w) and hence of 4>(ao). In the third method
an equation for I was derived from Eq. (1) and solved directly in finite
differences by succesive applications of the Fast Poisson Solver. The three
methods were compared for accuracy and efficiency, and the third method was
chosen as clearly superior.

The results agree well with the latitude dependance of observed atmospheric
correlation data. The value of the parameter Cq, chosen by best fit to the
data, is close to the value expected from dynamical considerations.

These results provide the basis for an optimal choice of coefficients for

statistical analysis of atmospheric data.

-
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"On the Applications of Special Functions in Te§ts
for Standardized Generalized Variances of Multi-
variate Normal Populations of Possibly Different
Dimensions"

ABSTRACT

1. Summary. The concept of Standardized Generalized Variances (SGVs)
is introduced. Several new problems of multivariate statistical
inference are formulated on the basis of these SGVs. It is shown
that in addition to providing several new statistical tests, many
2xisting problems of multivariate tests of significance can be '
regarded as special cases of these formulations and can also be

extended to their full generalities. The null and non-null distribu-

tions of these test criteria are thus of vital importance. Consider-

ing multivariate normal populations with general and equi-correlated

covariance matrices, these distributions are deduced in coaputable

forms in terms of a variety of Special Functions, e.g., Pincherle's

H-function, Meijer's G-function, Kummer's function, Whittaker's
—_— J 3

function, Riemann's Zeta function and Psi-function. The highly

desirable property of unbiasedness is also established for most of the
above test criteria. Finally, applications of the above tests to a
wide spectrum of applied research are also illustrated by examples

taken from the existing literature.
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2. Introduction. Let X be a p-dimensional random vector variable
with dispersion matrix Z. Two well-known measures of multidimensional
scatter, obtained by generalizing the variance, the univariate
measure, are L and the generalized variance (GV), IZ[ = det(X), intro-
duced by Wilks (1932). For multivariate normal populations, Likeli-
hood Ratio Tests (LRTs) for Is, of course of same dimensionalities,
and some optimum properties of these tests are known. But, when
multi-dimensional scatter of populations of different dimensions need
to be compared, these tests cannot be defined. However, using lZIl/p,
which we will nomenclature as Standardized Generalized Variance (SGV),
such comparisons become meaningful. Since IZ] represents the volume

in p-dimensions, note that ]Z[l/p

becomes a measure so scaled as to
become comparable with scatter for a scaler random variable. Apart
from this generality, need for tests of generalized variances have
been also felt, on its own right. :Z{, being a scalar, is more suit-
able and easier to work with than the matrix I. Hoel (1937) was
probably first to realize this need and later Eaton (1967) studied
some problems of statistical infgrence associated with a single GV.
The GV has been extensively used in applied research, e.g., by
Goodman (1966) in Agricultural Statistics, Gnanadesikan and Gupta
(1970) in Ranking and Selection, Arvanitis and Afonja (1971) in Sample
Survey, etc. While the estimation, e.g., van der Vaart (1965),
Shorrock and Zidek (1976), and the distribution, e.g., Bagai (1965),
Mathai (1972) have been studied in some detail, little seems to be
known about tests for GVs. This paper attempts to bridge that gap

via the extensive use of Special Functions.
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Suppose X

45 are independently distributed as Np.(ui,Zi), Zi

i
being general dispersion matrices, i=1,...,k. LRTs are deriv 1 for

ey o Ceod 4 ~/py
o, ;|Zi| =0, (given) > 0, for some fixed ij; Hio :]Zil =
1/p 1/p.

]Zj] 3, for some fixed i and j and finally H03 :lZil * all equal,

i=1,...,k against appropriate two-sided alternatives. The test
criteria turn out to be quite elegant multivariate analogues to those
in the univariate cases. The special case, when Zi.s are equi-
{ ; =
orrelated matrices, i.e., &, = (. = here = =
correlated m . » Iy (1puv) Zpi, where .p =1, u-=v,

and Puy = Py U # v, is next considered. As Anderson (1963) has

pointed out, the statistical inference dealing with correlation i

matrices can become much more complicated compared to those dealing

P N,

with covariance matrices. However, such equi-correlated structure as

considered above is of extreme importance [see, e.g., Kshirsagar

(1978), p. 227) and has extensive applications [see, e.g., Mitra and

Ling (1979)] in applied research. After exhibiting the shortcomings

of the LRT in this case, some new tests, including one based on the

smallest chracteristic root of the dispersion matrix, are given in

this paper.
The solutions to the distributional problems associated with

the various test statistics considered above need extensive use of

T T T T T AT PR T O o e oo

Special Functions. The exact distributions for both the null and
non-null cases are presented for most of the above test criteria.

The percentage points of these distributions can be obtained from

existing mathematical tables since the distributions are represented

in suitable computable forms. Examples of construction of tables and
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the general procedure of obtaining them for such computable forms of
the distributions exist in current literature, e.g., Mathai (1979).
Further, many of the existing tables can also be exploited to give
the percentage points. Large sample approximations to the above
distributions are also presented.

Considering general Zi of equal dimensions, for HOl and HOZ’
it is shown that the 'modified' LRTs are unbiased--a result parallel
to Sugiura and Nagao (1968) on tests of covariance matrices. Total
and partial unbiasedness of some of the tests proposed for the equi-
correlated case are also estabiished. It is shown that the same
invariant measure under the full linear group that was exploited to
prove the unbiasedness in the cases of tests for covariance matrices

can also be exploited here to establish the unbiasedness of tests for

SGVs.

3. Applications. In addition to the mathematically interesting
nature of the problem and the applications cited above, there lies a
rich fertile area for numerous applications of the SGVs, In fact,
wherever variance is employed for univariate situations, SGVs seem to
be applicable for the multivariate situations. Some examples are
cited below.

(a) Multivariate Quality Control. It is well known [e.g., see

Steyn (1978)] that testing H, : the population mean vector u_ of X,

0 ~r ~

Xr ~ Np(ur, L), remains constant during the sampling process against

~

the alternative that M varies during the process, is equivalent to

4
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GV = IZI against H1 : GV = IZ*[, where Z* = (I+2p/n)Z,

testing Ho:
D= Z:_l u u; Z_l, n being the sample size. One of the many appli-

cations of this result and hence test for SGV can be seen in multi-

variate quality control.

(b) Generalized Canonical Variable (GCV) Analysis. When the original

vector can be divided into k > 2 mutually exclusive groups, Anderson
(1958) proposed GCVs to be obtained by minimizing their GV. Steel
(1951) and Kettering (1969) (in his Ph.D. thesis) have attempted to
construct such GCVs. However, no results on statistical inference
associated with these GCVs are available. Gnanadesikan (1977),
drawing from a well-known example in psychometry, posed the problem
of selection among GCVs obtained by different types of grouping. The
problem with its extension in full generality boils down to tests of

SGVs and hence can be tackled by the methods outlined in this paper.

(c) Generalized Homogeneity of Multi-dimensional Scatter. Dyer and

Keating (1980) were interested in the homogeneity of variances of the
sealed bids of "five' Texas offshore oil and gas leases. A glance at
their data reveals that the 'five' leases are actually five groups
with different number of components. Treating the data as in an
univariate set-up, they proceeded to test for the homogeneity of
variances. However, it seems more appropriate to consider the groups
as vector variables and test for homogeneity of 'variances' of 'hese
groups, which we can term as 'Generalized Homogeneity.' This will be

equivalent to testing homogeneity of SGVs, which is precisely H

03

defined above.
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4, Distributions and Associated Special Functions. First consider
2p.

general Xis. Let Sj.s be sample sums and product matrices, Ni giol =

|Sil, Ni being the sample size, i=1,...,k. Consider the setup of

Section 2. Let ah be the critical region of the LRTs or equivalent

criteria for testing H . against both-sided alternatives, j=1,2,3.

03

Two-stage maximum likelihood estimation and some judicious transfor-

mations are employed to provide the following results.

1/pi
@y :Xl = ISiI > ay or < a,;; ag,a, being constants.
1/p; 1/pj
@, :AZ = |Si] /]Sjl > b0 or < bl; bo,b1 being constants.
ko 2 2 Rh
@, :13 = {siO/(ZNipi siO/ZNipi)’ < no (constant).

i=1

Through the use of Calculus of Residues, the exact null and non-null
distributions of kl is given in computable forms of G-functions,
those of AZ in computable forms of H-function and those of u = cA3,

¢ being a constant, for all Ni and k but pi==1 or 2 as,

v/2

s @ = TG ap1c)2aid (an @2 gy

« (-log u)(n_B)/2 Ea () |, 0O<uc<l

_ o r .. =278
where Ea(u) =1+ Zr=1 vr(g)(—log u) if e <u <1l and Vr(f)’ a

~

function of Bernoulli numbers, v, Ca’ and B are obtainable when Ni’ k

~

and p; s are specified. Tables for the distribution of v are given

in Dyer and Keating (1980). Usual large-sample x2 approxinations hold
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for -2 log e Aj’ 3 =11;;2,3. Additionally, normal and Garra approxima-
tions for giollzil 1 are reviewed. An F-approximation is provided
for fhe distribution of AZ. For 13, an approximation is given in terms
of Bartlett's distribution. These approximations turn out to be exact
when p; s are any combinations of 1s or 2s. -

Next the equi-correlated case is considered. The LRT for
HO: Py = Ps0 against Hl 10y # Pi0 (i fixed) is derived. The MLE for
pi is shown to have some undesirable properties. A test based on
truncated Best Unbiased Estimator for Py is provided. The distribu-

tions of the test statistic for both the null and non-null cases are

represented in terms of Kummer's function and Whittaker's function.

The LRT for H01 is given., Additionally, a simpler test is provided t

through a characterization of the problem in terms of the smallest

eigenvalue of the covariance matrix. LRTs and modified tests using

Isotonic regression techniques are also provided for HOZ and H03'

Total and partial unbiasedness of most of the tests discussed

above are also established.
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"The Selberg Distribution"
ABSTRACT
In 1944, A. Selberg [4] evaluated an important multivariate extension of

the beta integral. He showed that

1 N S -1 2k
1) t,  (1-t)Y TT (t=t)]|  dt, --- de
'{)‘ '{J‘ :Er 1 1 Ilsl<jsn 1 1 n

—

n_ DNx+(-1)k) C(y+{J-1)k) T(1+§k)
- T

j=l T(x+y+(n+j-2)k) I'(l+k)

where Re(x) >0, Re(y)>0 and Re(k)> ‘}li , -B%_(;_‘). , -Bf:(lﬂ .
Upon normalization, (1) gives the joint density function of our principle
object of study: the Selberg distribution with parameters x, y, k and n .
Some important limiting distributions are as follows. Llet x=zy and y—-w.

Then (1) becomes

n
(2) : fm---f" e-% ‘gltiz | T (tl-t)Idea---dt
(2")52'- o - 1si1<jsn !} n
n r(l+jk)
“ 9=l Lk
Re (k) > -l; , which was studied by Mehta and Dyson 3] . For

k = lz' , k=1 and k=2, this corresponds to the distribution of the

eigenvalues of orthogonal, hermitian and symplectic matrices, respectively.
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Letting y—w 1in (l) ylelds

© o n -t

-1 1 2k

(3) cee OTT e M1 TT )% dyy - e et

'{; ";) f=1 1 lst<jsn 1 n

n Tix+ (J-1) k) I(l +3k)
=TT ,
j=1 r(l+k)

where Re(x) > 0 and Re(k)>-%, -&z—_gl-‘l . For k:%, this

ccrresponds to the distribution (see Anderson (l; ch. 13]) of the eigenvalues
of a random matrix from the Wishart distribution with mean vector 0 and
spherical dispersion matrix. .

For n=1, (l), (2) and (3) reduce to the univariate beta, normal and
gamma or chi-square distributions, respectively. The most fundamental of
these is the beta distribution, since it has 2 parameters and includes the
others as limiting cases. We are led to study the Selberg distribution where
X, Y, 2k and n are positive integers. For n=1, thisis the distribution
of the xth order statistic u(x) from a sampleof x+y-1 (id u(0,l)

random variables. We shall generalize this to Selberg's distribution. Let

(4) M=n(x+y-1)+zk(;_‘) .

Decompose the set of integers from 1 to M as a disjoint union

n
“'...‘M)g(m,...,mn}u U (§,uL)u U B

1=1 l1s{<jsn 2a

where
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The number of ways in which this can be done is given by the multinomial

coefficient

( " )
lyeoe,l,x=1, 000, %=1, y=1,2¢¢,y-1,2k, * ¢, 2k

M!

(7)
[x=1)1 (y-1)1]" (k1) 2

which we denote by (hf) . Let T(x,y,k,n) denote the number of these

choices which also satisfy (inequalities with sets hold for all elements)

<m,, lsi<jsn.

(5) Sl<m1<L, l1sisn and m j Y

1 < By

The condition (5) implies m, <m, for ls{i<jsn. Let I(x,vy.,k,n)

i i
denote Selberg's integral (1) . Then

I(x k,n
n!

-
o

S
1]

n - -
0<t1<t2<---<tn<1 i=1 Isi<jsn

corresponds to the distribution of the order statistics from Selberg's distribution.

We have

(7 I(x 'k n) _ T(x,y,k,n)

— rv—




so that the problem of evaluating (1) is equivalent to the combinatorial problem

of evaluating T(x,y,k,n) . Let

u(l) < u(z) < see < u(M-l) < U(M)

be the order statistics of @ sampleof M {id u(C,l) random variables.
Choose one of the objects counted by T(x,y,k,n) atrandom, with each

equally likely to be selected. Then

(8) t= (fy, o0t
=(u(m)ou( 2°°°H U )
1 m?.) ‘mn)

is distributed as the order statistics of Selberg's distribution (corresponding to
(6)). Let 0o e Sn be chosen at random, with each permutation equally likely

to occur. Then

9) g(t) = (u TR )
(mg ey (Mg ()

has Selberg's distribution. This fact and (7) both follow by generating the

random variables in (6) from an acceptance-rejection proce: s
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Louis Kates

"The Zonal Polynomials of Multivariate Analysis
as Special Functions"

ABSTRACT

1. Introduction

The special functions which have received the most
attention in multivariate analysis are the zonal polynomials.
Modulo the orthogonal group, they are roughly the eigen- 3
functions of matrix multiplication. They provide the

natural group theoretic basis for the space of complex-

valued analytic functionals of an n x n matrix which are
both left and right invariant under the orthogonal group.
Since this space is the home of the multivariate Gaussian
density as well as others, its natural decomposition is ; P
necessarily of interest.

The ease of dealing with zonal polynomials would be
enhanced considerably if the abstract eigenfunction property

were audgmented with a concrete and explicit workable formula.

The desirability and difficulty of obtaining such an expression

o o ks - e
-




has been discussed on several occasions (James, 1975),
(MacLaren, 1975). It is our purpose to give such an
expression and note how it arises from considering zonal
polynomials as special functions defined in the group
theoretic sense of zonal spherical functions on symmetric
space. The discussion and results presented here have
previously appeared in the author's Ph.D. thesis (Kates,
1980). An attempt has been made to keep the exposition

at a fairly elementary level.

2. Fourier Analysis

We take the viewpoint of Fourier analysis on groups.
This approach has not previously been taken in the :
statistical literature. It is nevertheless a quite natural
and direct approach. We proceed partly by example.

Let G = {gl,gz,g3,g4} be a four element commutative
group. Let C(G) = {f : G - > C} denote the set of complex-
valued functions on G. Each function f is defined by a
four-tuple (f(gl),f(gz),f(g3),f(g4)) showing that C(G) is
a four dimensional vector space. The operators Tg. which
act on C(G) are linear and are defined as

Tg,f(g) = f(g9').
They have the effect of translating the graph of f by g'.

The commutativity of G implies the commutativity of the Tg.
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The Tg are individually diagonalizable commuting 4 by 4
matrices and so can be simultaneously diagonalized.
Their simultaneous eigenvectors are called zonal spherical
functions and form the natural basis for Fourier analysis
on C(G).

If G is non-commutative the Tg no longer commute so we
cannot simultaneously diagonalize them. However, if we
are only interested in a subspace V of C(G) then it may be

true that the Tg operators, suitably restricted to V, are

commutative.

Now suppose that G is not a four element commutative !
group but rather the n by n nonsingular real matrices
regarded as a (noncommutative) group under matrix multi-
plication and inversion. Within C(G), the complex-valued
functions on G, let V be that subspace consisting of those
functions which are:

(i) expressible as a power series
in the n2 elements of their
argument
(ii) orthogonally bi-invariant,
namely f(XXK) = f(X), for all
orthogonal H and K.
Let P be the projection of the vector space C(G) onto the

subspace V. Then the operators PTg acting on V commute and
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their simultaneous eigenfunctions are called zonal
spherical functions of the pair of groups: real non-
singulars/orthogonals. They are also called zonal

polynomials.

3. An Explicit Formula

Let Kk = (kl,k ceor ku) where k, 2 k, 2 >k =20

27 1 - 72 e n

are integers. Suppose A, = Ai(NTXTXN) is the determinant
of the upper left i x i submatrix of N'X"XN where X is

a nonsingular n X n matrix and N is an n x n random matrix
whose entries are independent Gaussian random variables,
each with mean 0 and variance 1. The orthogonal bi-
invariance property of zonal polynomials implies that they
depend on X only through X'X so we regard them as functions

of XTX in what follows. Our aim is to show that

k,=-k k

_kl k "k - k
(*) ZK(XTX) - E(All 2 2 n n-1

s, el By b

)
by showing that (*) satisfies the eigenfunction property
and forms a basis for V. Here E means expectation.

To evaluate any given zonal polynomial multiply out
the integrand giving a polynomial in independent Gaussian

random variables, each with mean 0 and variance 1. Since

the 2mth moment of such a random variable is (2m)!/(2mm!)

and all odd mor ts are 0, substitution yields the polynomial




explicitly. Alternatively, one could Monte Carlo the

function X

ki=k, k,-k
e AT
n

17k
1 4,

A 3

Since zonal polynomials are eigenfunctions, their
normalization is unimportant. Thus with change of
normalization (*) holds true when the probability
distribution of N is replaced by the uniform probability
distribution over the orthogonal group (also called Haar
probability measure). This renormalization is such that
the zonal polynomial equals 1 when evaluated at the
identity. We denote it C: (x"X). 1In one of these two
forms the formula can be used to prove many additional
facts .oout zonal polvnomials as well as to reprove known

results in a more direct fashion.

FOOTNOTES

James, A. T. (1975). Special Functions of Matrix
and Single Argument in Statistics. Appears
in Askey, R. A. Theory and Application of
Special Functions, Academic Press, 497-519.

Kates, L. K. (1980). Zonal pPolynomials. Ph.D.
dissertation, Princeton University.

MacLaren, M. L. (1975). Groups, Lie Groups and
Multivariate Statistics. Ph.D. dissertation,

University of Adelaide.




B-68

S.K. Katti
University of Missouri

TOPIC: Infinite Divisibility

O e

ABSTRACT

This topic covers a set of three papers on the topic of infinite

divisibility. Infinite divisibility has always been tucked

away 1n the jargon of complex variables. If we stick to integer

J valued variables, then this tipic can be handled through very
simple algebra and through the use of computers whenever neces-

é ary. A necessary and sufficient condition is that a series of

: determinants be nonnegative. Thus the user can test for infinite

j divisibility be computing a bunch of these determinants and see

if they are nonnegative. In the papers, we give proofs of

infinite divisibility using these determinants. We also give

sufficient conditions. One sufficient condition is, "If Pi, 5

! 1 0,1,... are such that Pi/Pi_l are monotone nondecrecasina,

then the distribution described by Pi 1s infinitely divisikle."

A side issue resulting from thils extreme simplicity and "computer-
1zing of the problem and pulling 1t out of the range of the
\bstract complex variables" is that we are now trying to test

for independence of observations in successive plots in a farr

using the first few determinants as our test statistic.
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"The Communality Problem for Stieltjes Matrices"

ABSTRACT

The Communality Problem is very important in Factor Analysis. ;
The problem is that of reducing the diagonal elements of a given

correlation matrix so that the resulting matrix will be positive

semidefinite and of minimum rank. The new diagonal elements are

called the communalities. We defind a correlation matrix as a

symmetric and positive semidefinite matrix with unities along

the diagonal and fractional numbers between -1 and +1 in the off-
diagonal positions.

Many researchers have studied the Communality Problem (for a

detailed set of references, see Harman [1]). However, no effective

solution procedures have yet been devised. In this paper, we propose
a variant problem and give an algorithm for its solution. We prove that
a solution to our problem also solves the Communality problem if the
given matrix is Stieltjes.

We can state the Communality Problem as follows:

Problem 1

Given a correlation matrix R, find a non-negative diagonal matrix

D such that

(1) R - D is positive semidefinite, and

(ii) rank (R - D) = min. g
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Let us examine the variant problem:

Problem 2

Given a correlation matrix R, find a non-negative diagonal matrix
D such that
(i) R - D is positive semidefinite,
(ii) rank (R - D) = min., and
(iii) rank (R - D) + rank (D) = rank (R). 0
Condition (iii) is the additional constraint that we have imposed.

For convenience, we use the following notations:
Notations

We let CP(A) denote Problem 1 with A as the given correlation
matrix, and let P(B) denote Problem 2 with B as the given correlation
matrix. 0

For a given correlation matrix R, let D1 and D2 be the nonnegative

diagonal matrices that solve CP(R) and P(R), respectively. The extra

condition for P(R) implies that
rank (R -~ Dl) < rank (R - D2).

We can easily construct an example for which the inequality above is
strict.
Let us describe an algorithm for solving P(R), where R is a given

correlation matrix. Let an eigenvalue decomposition of R be

R = 0zQ",
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where Q 1s orthogonal and

with Zl a nonsingular diagonal matrix of order r.

Let
Q= (Ql’ QZ)’
where Q1 is n x r.

Define the index set

Z = {1 | row i of Q2 consists of all zeros}, if r < n.
{1,2,...,n} if r = n.
If Z is empty, we cannot reduce the rank of R without giving the
resulting matrix a negative eigenvalue. Hence we assume that 2Z is
nonempty. Let
z = {i(1), 1(2), ..., i(V)}.

For j = 1,2, ..., 2, we can find a vector x such that

~i1(3)
Rx = iy
1) T 2

The general solutfon is

-1 t
i " U Qg t e

where w ¢ N(R).
Let ¥ be an d x d matrix with its (j,k) element equal to the i(j)-th
element of 51(k)'

choice of w in the previous equation, as w

Note that the elements of Y are not affected by the

1(3) =0 for j =1,...,%.

Let I be the set of indices such that for 1,j ¢ 1

yij =0 for 1 = j.

]
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Construct the diagonal matrix

t
D= sEr1(h)%1(5)81(3)
where

Qg = 2.
1(3) Vi3

Note that ai(j) is positive because

t -1t
- z X
137 %5 % Q%)
and
21(1) ¢ N(R).
It is easy to check that
(R - D)Ei(j) =0 for j e I. |

We can also show that the matrix R = D is positive semidefinite and that
rank (R - D) = rank (R) - rank (D).

As our goal is to wminimize rank (R - D), we want to determine the
index set I of maximum size. It is known, however, that determining
such an I requires work which is exponential in &, the size of Z.
Fortunately, £ is usually very small for the matrices of the Com-
munality Problem.

We next consider the case when our correlation matrix is a
Stieltjes matrix, i.e. a positive definite matrix with nonpositive

off-diagonal elements. Let D be a nonnegative diagonal matrix which

solves P(R). We are going to show that D is also a solution to CP(R).

Reference

{1] Harman, H.H., Modern Factor Analysis, University of Chicago
Press, Chicago (1976).
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"The Laguerre Transform"

ABSTRACT

A novel transform is presented which maps continuum
functions (such as probability distributions) into disc-
rete sequences and permits rapid numerical calculation
of convolutions, multiple convolutions, and Neumann
expansions for Volterra integral equations. The trans-
form is based on the Laguerre polynomials, associated
Laguerre functions, and their convolution properties.

Part 1 of this pape:r deals with functions having
sugpport only on [0,2). The resulting unilateral

Laguerre transform finds applications in convolution of

such functions, 1inversion of Laplace transform, and in
solution to renewal and related Volterra integral
equations.

Part 2 of this paper deals with functions having
support on {(-«,») via a bilateral Laquerre transform +
which is an extension of the unilateral transform.

Applications of this technigue include convolution of
such functions and analysis of the Lindley process.
rart 1 has been published in Applied Mathematics

and Computation and part 2 has been submitted for pub-

lication in that journal.
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SUMMARY - PART 1

One often encounters in applied studies integral equations ([16]

either of form
X
f alx -~ x")E(x)dx' = b(x) (1)
0 -
or of the form
P4
fi{x) - J[ a{x - x")f(x*)dx' = b{x) (2)
0
where af{x] and b{x) are specified functions anéd £(x) is to> be
found. Equations (1l and (2) are saié to be Volterra integral eg-

uations ¢f convolution type cf the firs+t and second kind respezt:ve-

lyv. The Neumanr series soluticn of (2) has the form [l9!

wnere the «sioricoiy I200%es coaveliution arna o {n ig the ¥-I21c

convcluticn °f z2(x' with itsel:l,

. k . . .
The entity b a( )(x) and matrix veriants associated with

systems o0f intecral ezuations of ccnvolution type arisg in opera-

w6].

£

icz. studies

Lias ]

U3]

tions research [ ¢ J, encineerinz [ ], &nd biclo
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Sometimes, differential-integral equations give rise to expressions

such as )
s{1) = i e M —(—A—'—r-)—k—— a k) (o) (4)
k=0 (k + 1)1

which describes the busy-period density for certain M|G|l queueing
systems [18].
In easy cases the integral equations may be solved analy-
tically via Laplace transformation, and full answers may be obtained
when the Laplace transforms are invertible. More often than not,
such transforms cannot be inverted and expressions such as (4) are
of limited value when they cannot be evaluated explictly. The !
Laguerre transformation techniques developed in this paper may
then be of value.

The decornvolution problem of finding £(x) from (1) when

a(x) and b(x) are kncwn numerically, say. is particularly
trourlesome, and ctart-up difficulties describel below may make
conventional rumericel crocedures useless.

The Lagzuerre trarcsform technigues describel map continuunm
functions intc ceguences, and map the continuum convolttion opera-
tion into lattice convolution of these sequences. Such discrete

convolutions are well matched to modern computer competence, and

the inversion magpino back to the continuum is direct.
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Laguerre transformation has been developed as a tool for the

solution of differential equations [12]. The applications of

interest here are gquite different and new
convert the underlying simple idea into a

dure adapted to computer requirements.

tools have been needed to

flexible working proce-

The first section introduces the lLaguerre transform

T: £(1) -+ (fﬁ+)° in a form convenient for our needs. One has

0
£(1) = ngo £ £ (1)

for any sgquare-integratle function f£(1)

/2

-7 :
Ln(T)e are the classical orthonormeal

Ln(T) are the lLaguerre polynomials. The

and Stegun [1 ] is employe@ throughout. Ortheonormality provide

the inverse transficrmation

+ = -
Let T?‘(u) = E:fl”un be the generating
0

(5)

on (0,=}), where J<_(7) =

n
Laguerre functions ani

notation of Abremowitz

m

€

function ¢ I7' . <her
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where ¢(s) is the Laplace transform of £(t). This relationship
. . Lt
permits evaluation of fn for many important f£f(1). )
Section 2 provides simple examples of the transform, and
Section 3 discusses the structure of T?*(u) in the complex u-

plane. Such insight into structure in the complex plane is crucial

to many of our algorithms and theorems.

Aigorithms foé tﬁé calculation of the Laguerre coefficients
are presented in Section 7. Section 8 is devoted to a discussion
of the deconvolution problem.

A variety of numerical examples of the methol are treated in
Section §, and the implementation of the procedure is discussed.

Secticon 10 describes interpolation methods &and problers when :

the known functions are known only numerically.

O
Ve
+
5.
[

A fanal section deals with pcssirle general-zztions

methold tc special families cf functions.
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SUMMARY - PART 2

o S Gt e iz s i1

In a previous paper, hereafter designated by [A], a description was

e o {oree

given of a Laguerre transformation which maps a function f(1) in LZ(O,e)
# - :
into a sequence (fn); on the nonnegative integers. Moreover, for two

such functions f(1), g(1), the convolution f(1)-g(1) is mapped into the

#

PP .
- ((fm) (gm))n. Cne obtains thereby

lattice convolution (f*g)z = g fﬁ_mg
an algorithmic basis for the computation of multiple convolutions f(k)(r)
and related infinite series of importance to statistics and applied prota-
bility.

Such Laguerre transforms have one-sided functions as their natural
domain because the Laguerre polynomials Ln(r) and Laguerre functions

/2

£n(r) = Ln(T)e' are associated with the one-sided weight functior

e " on (0,). Nevertheless, the methods have a simple extension to two-

R S

sided functions on the full continuum (-=, =) via the same Laguerre

functions as we will see.

it

A variety of applications exist to statistics, operations researih,
and engineerirg. In statistics, for exarple, one has need for multipie
convolutions cf two-sided distributions unavailable analvticall,, ths:
of the logistic distribution, for example. Even relatively innocuous
distributions such as the Laplace distribution convolve with difficuity.

In operations research studies dealing with queues, inventories and
storage systems, one encounters as a structural entity (3] the extendel

w
renewal density h(x) = 5 a(k)(x), where afx) is a probasbilitv density

1
function with two-sided support. Fcr many densities of interest, evaluz-

tior of h(x) has beer resistant. ’
l
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In the earlier paper [A], the crucial role of the complex plane in
the formulation of the algorithms was evident, even though the algorithms
were entirely in the real domain. For the bilateral transform, the com-
plex plane is again very much present, with Laurent expansions, bilateral
Laplace transformation and conformal mapping entering as crucial tools.

The first section extends the earlier formalism to the full continuun.
That this extension is natural, and not just an artificial piecing together
of the formalism for each half-line, will be clear from (1.9), (1.12) and
(1.13). The harmony of the basis will also emerge vividly in Section 3,
which deals with the extent of the transform coefficients, and associated
uncertainty relations. The topic of extent is crucial to the utility of
the Laguerre transform method as a numerical tool. Numerical examples are
presented in Section 5. A table of contents provides the reader with an

overview of the paper.’

Two references (V. I. Krylov and N. S. Skoblya [8], and k. 7. Weeks [iI))
have come to the authors' attention subsequent to publication of [A]. Both
deal with the use of Laguerre functions for the numerical irversion cf c-«
sided Laplace transforrcs.
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Paul Speckman
University of Oregon

"Spline Smoothing and Optimal Rates of Convergence
in Nonparametric Regression Models"

ABSTRACT

1. The model. Consider the nonparametric regression

model

vy = f(xi) + e, i=1,...,n,

where observations are taken at distinct points assuzed for

simplicity to be in ({0,1]. The usual assumptions on the
2

] random errors are in force, i.e., Eei =0, E cicj = Cijo s
but the response function f 1is assumcd only to be sufficiently
smooth so that uf(k)nz - Ilf(k)(x)zdx exists and is finite.
This model is motivateg by certain robustness consider-
ations. For small a > 0, the class {f: f has k-1 abs. cont.
derivatives, Hf(k)u < a} can be viewed as a collection of
response functions at least locally well approximated by
polynomials of degree k-1 (or order k). If a regression
method is uniformly good in this class, it is robust to
arbitrary small departures from the standard kth order

polynomial model (see [7]). This concept is also related to

the models of Sacks and Ylvisaker [6].

2. A basis for splines and the proposed estimator. A

variant of spline smoothing is proposed which is most easily




O
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expressed using the basis of Demmler and Reinsch [2]). Given

a distinct knot set {xl,...,xn], let J%$

denote the n dimen-
sional space of natural polynomial splines of degree 2k-1
wit simple knots at the prescribed points. Therce is a basis

= R 2k . . . n
‘“l""’”n] for J11 along with eigenvalues ‘Xi]i=1

deterniined (essentially uniquely) by the conditions

N~

a =
?‘ v (% )CPj (x,) oy

1

1
- (m) m) , ya. - ;
53 5 (x)tpj (x)dx it

~ n ~
ot B, = T y.p,.(x.). (Note that p, 1is the least squares
1 j=L Y1 1t ]
n .
estlacior of », if £ = Y pLe. € d2k.) With this bhasis,
ie] 303 n
1= !
the family of estimators to be studied, indexed by o puaicawcter

X > 0, has the form

- n
fk(X) = izl(l’Jiii)+bi@i(x)-

One can see that fl is a natural polynomial spline, but it

is not the smoothing spline of Reinsch [5].

3. Optimal rates of convergence. The purpose of

~

introducing fl is that it is minimax in the following sense.
Let ¢ be the class of all estimators f which are linear
in the observations. (Clearly fx € ¢.) For fixed f and

~

A n a
£ ¢ define T(f,f) = -}Tizl(f(xi%f(xi))z. Then the next

result follows from Kuks and Olman [4].
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min max ET(f,f) = min max ET(f,fl)

THEOREM 1.
(k)h=;a

fee £ sa T

i a2y, 22 2
= min {a“A+0° T (1-Jk11)+} .
A i=1

From the last expression, the minimax rate of convergence
of ET(f,fk) is seen to depend critically on the eigenvalues

In this paper an approximation is given when the

‘Xl"""n}'

xi‘s are cqually spaced, although similar results undoubtedly
hoia 1or any sctting where the points are suitably resuiar,
Yo Koy tool is an estimate firet given by Utreras [ and

duc i the form here to the author.

LEMMA. For k = 2, there exist constants dk such chat
.2k 2/(2k + 1)
13—-(14-0(1)) uniformly in j for j = O(n ).
¢

Aj = dk
With this estimate the best possible uniform rate of convergence

follows.

THEOREM 2. For equally spaced points and k = 2,

min max ET(f,%) = n-Zk/(Zk*'l)ck(a,o)(l-+o(1))

fee 1My <q

is a constant depending only on k, &, and o.
There

where ck(a,o)
This rate compares with recent work of Stone {8].

the same rate is obtained under weaker conditions but without

the exact constant.
In the usual situation there is a single fixed but

unknown f£. Let 1* be the minimizer of ET(f,fX).
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LEMMA. ET(E,f ,) = n 2K/ (Zk+1) ¢ (M ,0) (1 +0(1)) and ,-
A

V¥ = o(l/ (2t 1)y .

4. An adaptive estimator. Since in practice neither

nf(k)ﬁ nor ¢ 1is generally knowi, an experimentor is forced

to choose, subjectively or otherwise, some value of the
smoothing parameter A to use. This problem is characteristic
i virtually every nonparametric regression method. The pro-
“Cdure hivee is to estimate A by Wahba's method of gencralize.
cross validation. The main new result is weak consistency and
asymptotic optimality of the resulting adaptive method. This
proccedure is closely related to the one in Craven and Wahba [1]
where ordinary smoothing splines are used. However the con-
sistency result here is much stronger.

~

Since fk is a linear estimate, there is an n x n

matrix A()A) such that fx = (fx(xl),...,f (xn))' =A(\)y.

Then the cross validation function is defined to be
e Lyoorn2/t Lor (1- 2
vn(x) n”y fo /[thr(I A(N)))C .

Also, redefine

T (\) -3 g (£(x )'% (x, )2 = 1(¢ ; )
n n 4. R N | g S

i

Then a straight forward application of the GCV theorem of
Golub, Heath, and Wahba [3] yields :

EV_(A)-02-ET_(1) “
ET_(V) o

!
!
|
l
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uniformly in 0 < A < xg » where Xg is some sequence
satisfying x:/xz =+ 0. This implies that the minimizers of
EVn(X) and ETn(X) asymptotically coincide. I1f in addition
normality is assumed, the following much stronger result is

true.

LEMMA. Suppose the distribution of Yy is normal for

~

i = 1,...,n. Then there is an estimator ni of ¢ such

"2
V_(A)-0_%-ET_(})
. ET:(Q . = op(D)

uniformly in 0 < )\ = Xﬁ . From this the main result follows.

*
THEOREM 3. Let L be the minimizer of ETn(k). Under the

assumptions above, there is a sequence of (possibly local)

~ - ~ %*
minimizers {A_} of V_(A) such that A _/A_ - 1. Moreover,
=———=""n s 'n = *n'"n —_—

: *
T O /ET () -+ 1.
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"Incomplete Gamma Functions, Numerical and Asymptotical
Aspects for Evaluation and Inversion"
ABSTRACT

e following topics will be discussed:

~ The asymptotic expansion of integ.als of the type

. P o —at2

C8) F_(x) = (a/7) i © f(t) dt, a->w !
‘nich is uniformly valid with respect to x in a domain that contains
x = 0.

- The inversion (for large a) of Fa(x); i.e., the computation of x from
che equation Fa(x) = g, where g and a are given (a large).

- The numerical evaluation of the incomplete gamma functions for largc
values of their parameters. The algorithm is based on the asymptotic
rer.oesentation of Fa(x).

- Tne inversion of the incorplete gamma functions for large values of

|
: their parameters.
. We suppose that in (1) f is analytic in a domain of the complex
t-plane that contains the real axis, and that f(t) > 0 for real (finite)
. t. Furthermore we suppose that Fa(-w) = 1. Several distribution functions

ol mathematical statistics can be written as (1), for instance the
incomplete gamma functions. The function f may depend on a; we are

2llowing a representation
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© fn(t)
f(t) ~ z n ! a +» «,
n=0 a

in which fn and f have the same domain of analyticity.
: The asymptotic expansion of Fa(x) is obtained by an integration by
parts procedure. It has the form

3 T An —ax2 . Bn(x)
(2) F_(x) ~ } erfc(xa®) J —+e . i
a n n+l !
n=0 a n=0 a

The An and Bn are defined recursively in terms of £. They have the same
domain of analyticity as f.
The inversion of F,(x) =q, 0 <q <1, is for large a based on (2).

First we solve by using known algorithms the equation

1
1 erfc(xa®) = q,

giving for x an approximation Xy- Then a-« asymptotic expansion

1s derived, in which the x are expressed in terms of £, for instance

In,1 + f(xo) - £(0))

X, = .
1 ho

The expansion is especially useful in the neighborhood of x = 0, i.e.,
for valuer of q near }. Numerical experiments for the case of the
incomplete gamma functions show uniformity of (3) with respect to

q € [0,1]. For these functions more information on X will be given.

In general, the expansion in (2) is too complicated for numerical
computations. This will be illustrated for the incomplete gamma func-
tions (see also [1]). An altecnative is proposed, which in part is based
on (2), and which gives an efficient and reliable algorithm for the

computation of

1 x -t  a-1 1 o —t .a-1
. P(a, = — = ——_——— dt,
(4) (a,x) =) ‘0 e t dt, Qla.,x) Ta) ’x e t t

for a and x large near the critical line x = a. The algorithm runs as

follows. Introduce for x 2 0 and a > 0O
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(5) A =x/a, n = {2[A-1-1n A]}%
with sign n = sign(A-1) (A > 0). Then (see [11])

P(a,x) = } erfc[—(a/2)én] ~ R (n)
(6)

Qia,x) = } erfcl (a/Z)%n] + R_(n)
and Ra(n) has an expansion as the second series in (2). The function
Sa(n) in

1 _ian?

R (n) = (@/27)% e ? 5,(n)
1s for a > 0 and = « R slowly varying and it is analytic in a neighborhooc
ofn =20

t

) S = T K< ot
T atm = 2 s (an n T,

k=0

It satisfies the differential equation

3 _ _ 1 n
S,(n +as (n =1 " o1

dn "a r* (a)

where T*(a) = (a/2n)% eaa_aF(a) (a > 0), the relation between n and X
being given in (5). The S) in (7) are easily obtained from a recursion
relation, which for numerical applications is used in backward direction.
Instead of (7) we can expand Sa(n) in Chebyshev polynomials

Tk(n/no), for some np > 0, yielding an even beter expansion. In both
cases we obtain expansions, which converge faster as a increases, and
from which Sa(n) can be computed for, say, -1 < n < 1, or equivalently

for 0.3017.. < X < 2.357 ... . This gives an algorithm for the functions
in (4) for

0.3017a < x < 2.357a.

Initially we supposed large values of a. The algorithm works quite well

for a 2 5.

[1] N.M. TEMME, The asymptotic expansion of the incomplete gamma functions, !

SIAM J. Math. Anal. 10, 1979, 757-766. &
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David J. Thomson
Bell Laboratories

"Apptications of Spher-oilsl Wave Functions to
Time Series Analvsin"

ABSTRACT

Given a finite sample of a process some of the major problems of time
series analysis are those of testing for the presence of a line component, choos-
ing an algorithm to estimate the spectrum so that the estimate is not dominated
by bias, cnsuring that the estimate is consistent and statistically meaningful,
and maintaining these properties in the presence of minor vanations of assump-
tions. Despite a long history these prohlems are still lacking satisfactory solu-
tions in all but the simplest cases.

We assume a finite sample {xg, x,, ' .xy-} of a wide scnse station-
ary time scries having the centered Cramer representation

¥ i2xv(n— —N—z:l-)
X, == J' e dzZ (v)

20

The extended Cramer representation permits a distinction between harmonic
analysis and spectrum estimation: harmonic analpsis is concerned with the first
moments of d/ (). while spectrum analysis is the problem of estimating the
second moments of dZ (r).

These moments are estimated as functions of the discrete Founer
transform of the observations which, for notational simplicity, it is convenient
to define in centered form:

izef(n - B2y

N1
X(f)y- 2 e Xn
n—=0

Using the spectral representation for the data in this formula we have

17}
. sinNw(f—v)
: == DU TN V) 47 (s 1
SRR [y (») ()
which is the convolution of the Cramer process, dZ (v ), with a Dirichlet ker-
ncl.

In these paper we give a ncw solution to these problems obtained by
applying a “‘localized”” Karhunen-Loeve, or principle components, expansion in
the frequency domain to cstimate the moments of the Cramer process, dZ (v).
From this viewpoint equation (1) is best regarded as a linear Fredholm integral
equation of the first kind for dZ (») and, since detailed information about the
eigenfunctions and cigenvalues of the Dirichlet kernel have recently been pub-
lished by Slepian {1978], it is fcasible to attempt it’s solution. These cigenfunc-
tions, denoted by U; (N, W;f), k=0,1, - - - N—1 are known as discrete pro-
late spheroidal wave functions and are solutions of the cquation:




w

. sinN=(f—f") N —

: Ug (N, W) df =X (N, W) Uy (N, W,

L a7y Ue N Wl = M (V. W) U (N W3 )
Because the Dirichlet kernel is degenerate it is impossible to obtain exact or
unique solutions; what we attempt is an approximate solution which is both
numerically and statistically plausible.

Within this framework the harmonic analysis line test procedure becomes
essentially an analysis of variance applied to the cocflicients of the cigenexpan-
sion and so results in an approximate likelihood test. Similarily, from the spec-
trum estimation viewpoint, the technique used to approximatcly solve the fun-
damental integral equation results in an estimate which is data adaptive and
computationally cquivalent to using the weighted average of a series of direct
spectrum estimates made with orthogonal data windows ( discrete prolate
[ spheroidal sequences ) applied in the time domain. Since the expansion is
! applied in the frequency domain it is insensitive to minor departures from nor-
mality and the time domain aspects of the procedure permit it to be easily
robustificd against gross outliers.

While this procedure is philosophically very different from the various
autoregressive and maximum-entropy methods currently fashionable the
analysis of variance procedure provides considerable insight into the *‘super-
resolution’” question. Further, in addition to providing estimates of the spec-
trum which are based on well-established principles instead of hcuristics this
methodology also permits a resolution of the diffcrences between windowed and

unwindowed philosophies.

Slepian, D. [1978) Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncentainty- V: The
Discrete Case, Bell System Tech. J. 57 pp 1371-1429. !
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"Ahsolute Error Bounds for EZdreworth Asymptotic

txvansionsg”

ABSTRACT

1. Introduction

In this paper, we propose the use of MACSYMA to aid in
ebtaining absolute error bounds for a class of asymptotic ex-
pansions. The uniform asymptotic expansions of interest here
are those referred to in statistical literature as Edgeworth
series. The Edgeworth series can produce quickly converging
and accurate approximations to statistical distribution func-
tions whese computations are ordinarily intractable. This is
especially true for noncentral distributions with large para-
meters which include the noncentral beta and gamma distribu-
tions. Unfortunately, the only way to determine the accuracy
of these asymptotic expansions is by comparison to known
values.

The plan of attack in determining error bounds is to use
MACSYMA to find a continued fraction 'corresponding' to the
asymptotic series. Bounding an asymptotic series or summing
a divergent series via continued fractions is certainly not
new (Wali [10], Henrici {6], Shenton and Bowman [3]). How-
ever, this will be the first time the technique has been
applied to the rather complex Edgeworth series. This fact is
not surprising because the proposed technique would be more
than formidable without MACSYMA.

2. The Edgeworth Series

Various derivations of the Edgeworth series can be found
in the statistical literature. See Berry [1], Draper and
Tierney [3], Esseen [4], and Hsu [8]. We prefer an exposition
similar to that of Hill and Davis [7], because the series is
presented in an explicit, easily programmable form, which
eliminates the bother and possible mistakes in the production
and use of numerous tabled constants. Sece Draper and Tierney

(3].

Given a random variable, X, with pdf, f(x|0); where Oisa

possibly vector parameter. The characteristic function (cf)
(or Fourier-Stieltjes transform) of f(x|0) is denoted:

oy (t10) = Elexp(itx)] = [T exp(itx)f(x]0)dx. (2.1)

If a power series expansion in (it) exists for
1n ¢x(t]0), i.e.,




In4x (£]0) = I Ky e)I/st, (2.2)
J::

which is usually valid only if |t| < 1, then the coeffi-
cients, Kx(j), of (it)J/jl are the "cumulants" of the distri-
bution of the random variable, X.

This starting point for developing the Edgeworth expan-
sion is closely related to the central limit theorem, in that

we can view the random variable, X, as being the sum of

n = 02 = KX(Z) independently and identically distributed

(iid) random variables. The cf of the sum of n iid random

variables has the form [¢(t)]n. Clearly, if the cumulant
A 2
expansion (2.2) exists, ¢X(t|9) = [exp{(lndbx(tlg))/oz}]G

which implies that the random variable, X, can be viewed as
the sum of n = 02 iid random\mriableswithcumulantsKx(j)/oz.
If we make the transformation, Y = (X-u)/o, and note

that the cumulants of the standardized random variable, Y,
are:

I}

Ky(2) = Ky(2)/0” = 1, and (2.3)
Ky() = Ky(3)/od, for j > 3;

we can write the c¢f of Y in terms of the cumulants of X:

i

by (t]0) exp{'t2/2 + 1 Kx<j><ic/o>jjl}

j=3

It

§,(8) - exp{,211<j)<it)j+2/<cj<j+2)r)}; (2.4)
5t

2 -£2/2
where A(j) = Kx(j+2)/o , and ¢Z(t) = g , the cf of a

standard normal random variable. Cearly, if limo+wx(j)/oj =0,
then 1ima»m¢Y<t,9) = ¢z(t), or the limiting distribution of Y

is standard normal. This is the case for each of the four
distributions we have investigated.

o~ it
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Expanding the exponential of (2.4) in a Taylor series,
we have:
S - & = P k
0y (el =op ()4 T | L ADEOTH/ (T (G+2)D | /kips (2.5)
= J=

which is valid for |t] < 1. The fact that the series (2.5)
is not valid for all t was the source of some confusion re-
garding the convergence properties of the Edgeworth series
(see Fisher [5]). Cramer [2] ended the claims that the Edge-
worth series is convergent.

Now, if we expand (2.5), collecting terms with the same

power of o, we have a polynomial in (0-1) whose coefficients
are polynomials in powers of (it):

dy(t]0) = ¢z(t){1 + ) B.(it)o'j}; (2.6)
- 521 3

where By (it) = Al(it)3/3!,

By(it) = A, (it)*/41 + 22ae)®/ (3n?21), and
By(it) = A4(i0)°/51 + a2, (GE)T (3141 +23(i6) %/ (3D,
etc.

With a minor modification of the notation used by Hill and
Davis [7], we can develop a general expression for Bj(it) as

follows.
Denote by Hj, a partition of the positive integer, j,

into £ positive integers:

f1 Pl k k
i Hj - [:sl v ey skJ, J = j_z_-]_pisi’ L = lzlpi. (2-7)
and define three functions of the partition, Hj:
k .
m(Hj) = .z p; (s;+2) = 2443, (?.8)
i=1
X . -1
a(Hj) = .2 pil((si+2)l) 1 , and (2.9)
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= 1ok (2.10)
A(L,) = o, . 2.10
3T =1 8
Combining equations (2.8), (2.9), and (2.10), we have:
B, (it) = § a(n)A(I,) (it)24*3; (2.11)
j TR MO
J

where the summation is taken over all distinct partitions of
the integer, j.

The next step is to invert the ¢f (2.6) to cover the pdf
of the random variable, Y. The inversion formula is:

fy(yl0) = (@m) 7 exp(-ityloy(t]o)de.

Applying (2.12) to (2.6), which is valid only for |t]| < 1,
produces the Edgeworth series for the pdf. Note that the
result does not equal fY(le) because the range of integra-

tion exceeds the radius of convergence of the expansion.

(2.12)

To apply (2.12) to the expansion (2.6) term by term, the
following two results are required:

a) From Fourier analysis,

131 gy = enET Gy lexpi-ity-t2)/21de; (2.13)

where ¢(j)(y) = the jth derivative of a standard normal cdf.
Wote: oMy = £,(m )

b) From Rodrigues' Formula for Hermite Polynomials,

¢ Wre(yli-1) = 1)I LG . (2.14)

Applying (2.13) and (2.14) to (2.6), the powers of (it) in
(2.11) can be immediately replaced by the corresponding
Hermite polynomial, yielding the Edgeworth asymptotic expan- -
sion for the pdf of the random variable, Y:

n .

¢(1)(y){14- Y C.(yyo J}; where (* 15)
=1

[ a(iy)A()He (y]2845) . (2.16)

J

£4(r10) = £y(ylo n)

Cj(y) L
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Finally, to get the cdf [FY(yIQ) = jsz (u]Q)du], the inte-
gration is performed term wise to yiecld:

Fy(r10) = Fy(ylo,n) = 6@ ) - oWy { ,rflnj <y)c‘3}; (2.17)
j=
where Dj(y) are the same as Cj(y) except each Hermite poly-
nomial is reduced in order by 1, i.e.,
Dj (y) = % a(nj)x(nj)ue(y|21+j-1). (2.18)
J
3. Determining a J-fraction Corresponding to the Edgeworth
Series

To generalize the Edgeworth series, let f(y|0,0) be a

function of y, depending on a possible vector parameter, 0
and o. Then the Edgeworth expansion of the function is ~

£(ylo.0) = [ P, (yl©)o™d, with P, (y]0) polymomials. Wall
-~ .__0 -~ -~

(pp. 362-3) [10], gives several criteria for establishing the
existence of a continued fraction, J-fraction in Wall's
terminology, corresponding to a given power series. The
J-fraction is of the form:

If the Edgeworth series had been derived directly from the
Fourier-Stieltjes transform, without going through the
various transformations and rearrangements, the existence and
convergence of the J-fraction could be established in a
simpler manner (Henrici [6]). However, for the Edgeworth
series, the path of least resistance seems to be to use a
uvotient-difference type of algorithm (Henrici [6], Wall
?10]), to determine if a tractable law for the J-fraction
coefficients exists. This is where the powerful functions of
MACSYMA can be used; i.e., the algorithms can be implemented
symbolically and hopefully the resulting expressions will be
reduceable to the point where some law of formation can be
discovered. [Note: 1in the quotient-difference type algo-
rithms, the coefficients of the J-fraction are obtained in
terms of the coefficients of the Edgeworth series.]
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A starting point would be to try the above approach on
one of the simpler Edgeworth expansions, such as that for the
incomplete gamma function. Assuming success here (or fail-
ure), one could approach the Edgeworth series for central and
noncentral beta distributions. If the law for the J-fraction
coefficients can be determined through MACSYMA, then the next
step is to try to establish convergence of the continued
fraction to the desired function. Doing that, the Edgeworth
asymptotic expansion can then be bounded through the J-frac-
tion.

4. Conclusions

Perhaps the application of MACSYMA to the problem of
bounding Edgeworth asymptotic expansions will not produce any
good results. In any case, it can be no less successful than
the many previous attempts by other methods. It is hoped
that the occasional orderliness of statistical distribution
functions will surface in this attempt.
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Edward J. Wegman
Office of Naval Research

"On Computer Architectures for Statistical
Algorithms"

ABSTRACT

Statisticians have recently been concerned with robust regression concepts.
Introduction of M-estimation procedures somewhat extends the computational
burden over ordinary multiple linear models with normal errors, but does not yet
begin to test the computational capabilities of modern computer architectures.
Consider, for contrast, a reasonably straightforward application in image
processing. An image may be represented as a function, f: R2+R, taking the
real plane into the real line, z = f(x,y) being the intemsity at point (x,y)
and x‘and y be respectively the horizontal and vertical locations of a point
in the image. A very simple noisy picture may be represented as a regression

problem by
204 = f(xi, yj) + €4y (1)

where the €14 are the usual white Gaussian noise. This problem corresponds
to a snowy TV picture in weak reception area. Since f in general is a strongly

nonlinear iunction of Xy and yj it is clear that some nonlinear nonparar>t:ic

regressici methodology is necessary even in this simple case. Perhaps the
clc- st work to solving this problem is that of Wahba (1979). See also

Wegman and Wright (1980). Even this spline approach is not entirely adequate

since splines are required to be smooth and an image may have very sharp




discontinuities (high contrast). In certain satellite remote sensing appli-

cations, imaging sensors operate at very low light levels where individual
photons are counted., The white Gaussian noise assumption is then replaced
by a Poisson noise distribution. Moreover since these light levels are in

a nonlinear response region for film or other imagers (due to so called
reciprocity failure), the additive noise assumption is no longer appropriate.

Thus a regression model might take the more complex form

where o0 is a nonlinear binary operator and eij (to coin a phrase) is dark

non-Gaussian noise. To complicate the picture even more, we could ask for

color images which means that f must be a vector valued map, e.g.,

£: RSMR3, We might model this as
(rij’ bij' gij) = f(xit Yj) 0 eij (3)
vhere rij’ bij and gij represent the red, blue and green components of the

image. Notice that r and g1j will in general be correlated random

b
137 43
variables. One further complication is to suggest we might be interested ’'n
a motion picture. We thus introduce a time series aspect to our evolving

model which now may look like

(rijk’ bijk' gijk) - f(xiy yi» tk) o eijk . %)

and clearly f: R3»R3. To put some simple numbers to this example will help
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clarify our point. Even discounting the computational burden required to

estimate £ in the first place, a high resolution image normally is
represented digitally om 1024 x 1024 grid (of pixels). Thus each image

requires 220 eyaluations of f (itself a vector-valued function). For a

simple 20 minute film there are 28,800 images. If we were doing the digital
processing image by image, this would mean we had 28,800 nonlinear, non-
parametric non-Gaussian regressions to do and to evaluate each of the 28,800

vector-valued function estimators at 220 points. All this is required to

process digitally 20 minutes of color film taken in poor light, a relatively
realistic assignment. The dimensionality and sample size requirements
clearly demonstrate the need for imnovative development of statistical
algorithms based on a sound knowledge of modern computer architectures.

Some recent developments in microelectronic technology have revolution-
ized computer design. Very large scale integrated circuit technology (VLSI) has
revolutionized the concept of central processing units. VLSI circuit chips
now can contain a multiplier which makes parallel and network arrangements of
processors possible in a relatively inexpensive fashion. Processors may be
connected, for example, not only in parallel arrays but in orthogonal or
hexagonally connected arrays. Such innovative computer architectures allow
for a totally different approach to algorithm developmentf Some examples
using matrix manipulations suggest that statistical algorithms for multi-

dimensional data can be formulated in a fundamentally different way. See, for

example, Kung and Leiserson (1978) or Mead and Conway (1980). e advocate

~
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an organic approach to algorithm development. That is, rather than having
a theoretician develop a formula which is then translated by a programmer
to a computer algorithm, we think there is much to be derived from an

integrated approach.
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Roderick Wong
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"Some Applications of Asymptotics in Statistics"

ABSTRACT

In the study of probabilities of large samples one

often encounters integrals of the form

b
(1) 1=/ ¢ (x)[ £(x) 1 ax,

a
where ¢ (x) and f(x) are continuous functions defined on the
finite or infinite interval [a,b] and f(x) is positive there.
Long ago, Laplace made the observation that the major con-
tribution to the integral should come from the neighbourhoods
of the points'where f(x) attains its greatest value.
Furthermore, he showed that if f(x) attains its maximum
value only at the point & in (a,b) where f'(£) = 0 and

£f''(f) < 0, then as n » «

n+h { -27 }%

(2) v d(E)LE(E)Y] FYRRNTEY

This formula is now known as the Laplace approximation.
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However, it is not infrequent to come across integrals
of the form In that do not satisfy the conditions necessary
for the validity of the approximation in (2). Hence
extensions of and modifications to the method of Laplace

must be made in order to obtain the behaviour of these

integrals for large values of n. Here we shall consider
two such cases. Each of these is illustrated by a specific
example.

The first modification concerns the integral

2
{3) I(n) = [ xe [li%iELT dx,
- 0
where 0 (x) is given by '
z 5 -u?
(4) B(x) = == | du.
Y1 0

This integral occurred in a prolklem in probabilitv theory.
Note that the function %[ 1+8(x) ] monotonically increaces
frem ¢ to 1 as x varies from - to +w, Henrce the greatest
value of this function is not attained at a firite 2oint

but at infinity, and the conditions for the Laplace approxi-
mation are violated. Nevertheless, we shall snow that I (n)

has the behaviour

_ Yn log(n+i) _ /1 log log(n+l) 1
(5) I(n) (h<1) a + O((n*l) 1og(n+l))

(n+l)vlog(n+l)
as n > o,

The second modification deals with the incomplete

Beta-type integral
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1
(6) Jmy = [t (1-t) at,
n

where kn and a are real-valued functions of n satisfying

kn 1
7 — = + 0(=),
(7) n P (n)
(8) nk[an—al - 0 as n > w for each k =1, 2,...,
and 0 < p < a < 1. This integral arises from the study of

probabilities of large deviations. If we put

(9) f(t) = tP(1-e)17P
and
kn-np-l np-kn
(10) d(t;n) = t (1-t) '
the integral (6) becomes
1 n
(11) J(n) = [ ¢(sm){E(e) ] at,
a
n
which is indeed of the form in (1). Note that the function

¢ and the lower limit a now depend on n and hence the Laplace
approximation (2) does not apply directly. However, we shall
use a modification of Laplace's method to show that J(n)

has the asvmptotic expansion

n cl n €2,n
(12) Jir) [ f(a)] {——é— + é + ..., as n =+ «,
n
where the coetficients ci n are bounded functions of n. As
’

an application of this result, we show that ithe tail proeolao-

bility of the sample p~-quantile decays exponentially.
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List of Participants

PROFESSOR B. C. EAVES
Stanford University

PROFESSOR J. HARRISON
University of California-Berkeley

PROFESSOR H. KELLER
California Institute of Technology

PROFESSOR H.-P. PEITGEN
University of Bremen, Germany

PROFESSOR S. SMALE
University of California-Berkeley

PROFESSOR L. WATSON
Virginia Polytechnic Institute and
State University




List of Lectures

DATE SPEAKER TOPIC

Oct. 7, 1980 J. Harrison Flows without periodic orbits

Oct. 24, 1980 H.-0. Peitgen Continuation and bifurcation

Feb. 26, 1981 B. C. Eaves An introduction to solving equations

with P.L. homotopies

Mar. 24, 1981 H. Reller Continuation methods in seismic
ray tracing

Mar. 25, 1981 S. Smale Fundamental theory of algebra:
historical remarks and new '
perspectives from computer science

Mar. 26, 1981 S. Smale Cost of finding zeros of maps by a
variation of Newton's method

Mar. 27, 1981 H. Keller The optimization problem in
continuation and homotopy

Mar. 31, 1981 L. Watson Homotopy methods-~the Colt 45 of
nonlinear equation solvers







